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ABSTRACT
In this paper we study about the requirements of web3D models
and particular X3D formatted models in order to work efficiently
with Deep Learning algorithms. The reason we are focusing in
this particular type of 3D models is that we consider web3D as
part of the future in computer graphics. The introduction of meta-
verse™ technology, indeed confirms that lightweight interoperable
3D models will be an essential part of many novel services we will
see in the near future. Furthermore, X3D language is expressing
3D information in a way semantically friendly and so very useful
for future applications. In our research we conclude that the light-
weight X3D models require some vertices enhancement in order
to cooperate with Deep Learning algorithms, however we suggest
algorithms that may be applied and make the whole process in
Real-Time which is very important in case of web applications.
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1 INTRODUCTION
Machine learning classification is a rather mature research area that
gains more and more attention during the last decade especially
after the introduction of Deep Learning technology. The use of
Deep Learning algorithms in geometry classification has also gained
some serious attention [Guo 2021; Zhou 2020 ; Zhou 2021] since it
is related to the classification and finally recognition of geometries
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and objects that are either synthetic or even better created by the
use of sensors like cameras (ex. photogrammetric techniques) or
beam scanners (ex. laser, sonar, infrared etc.). The special case of
sensor created 3D models has gained even more attention the last
five years, since creating point clouds through sensors became
simpler, processors and smart devices are becoming more and more
powerful and cloud technology makes feasible to use complicated
deep learning algorithms in real time.

However, point clouds are not fully 3D models with vertices
and polygons, but rather are just a number of distributed points
(vertices). Creating polygons out of points is and additional and
rather complicated process that increases complexity and usually
makes the process hard non-real-time. Thus, community focuses on
classification algorithms that work directly with the point cloud and
extraction of skeletal and surface characteristics are considered as
part of the Deep Learning algorithm and the corresponding training
process.

In this paper we focus on classification of web3D models and
particular X3D formatted models. The reason we are focusing in
this particular type of 3D models is that we consider web3D as
part of the future in computer graphics. The introduction of meta-
verse technology, indeed confirms that lightweight interoperable
3D models will be an essential part of many novel services we will
see in the near future. Furthermore, X3D language is expressing
3D information in a way semantically friendly and so very useful
for exploitation.

In [Feng et al., 2018] authors present a deep learning algorithm
that is appropriate for classifyingmeshes of 3Dmodels. This method
aggregates face properties of meshes and classifies models accord-
ing to features extracted by deep learning training. The algorithm is
trying to combine spatial features of the meshes (vertices and center
point of a face) with structural such as normal and neighbor faces
indexing. In fact we consider this algorithm as a fusion algorithm
that engages features of point based methods with some features
of the mesh to improve the lack of points that usually have in the
case of mesh representations.

In [Kim 2020], authors present a methodology on how to clas-
sify X3D models using polygons and Deep Neural Network model
algorithm. Authors do not present the exact algorithm they use
or enough details about implementation. The presented results
look very corroborative for the methodology although they do not
specify whether they use a formal dataset for learning and testing
the algorithm or not. Moreover, the implementation is considering
running upon the polygons that makes preparation of the target
models a rather complicated process especially if they are point
clouds.
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Figure 1: The PointNet Architecture Diagram

In our approach we are using PointNet [Qi 2020] a Deep Learn-
ing algorithm for unordered point clouds classification that makes
the algorithm ideal for models generated by sensors. For the model
description we use X3D IndexedFaceset with coord attribute to give
us the point cloud. Since PointNet doesn’t require any knowledge
of surfaces of the 3D models, coordIndex in X3D IndexedFaceSet
are only considered when is required resampling of the point clouds
to increase efficiency. The problem that arises when using an point

based algorithm in classification of meshes is that usually meshes
doesn’t provide enough points for the algorithm to work efficiently.
We solve this problem by increasing the number of points to the
required one by interpolating points inside faces of the mesh. More-
over we evaluate our concept using the ModelNet40 [PRINCETON
2022] with 40 individual classes of 3D objects. An important notice
here is that the training set is not required to be in X3D format, only
the testing set is in this format. The whole implementation of Deep
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Learning is in Google™ TensorFlow with KERAS environment and
after training the algorithm is extracted in JSON format and runs
in client-side inside webpage with TensorFlow Javascript runtime
library.

We consider this paper as part of the tetralogy consisted of, point
cloud segmentation, model extraction, model classification and fi-
nally semantic description. In this paper we focus on model classifi-
cation. We are also working on segmentation and model extraction
and we hope that we will present our results in a forthcoming paper.
Moreover, previous works [Flotyński 2020] [Flotyński 2019] of the
community deal with the semantic expression of 3D scenes and
especially with semantical characterization of spatial interrelations
between individual objects inside a scene.

The rest of this manuscript is structured as follows: in section 2
we present the PointNet algorithm and we are providing several
details about the implementation, in section 3 we deal with the
required real-time conditioning of the X3D models point clouds
in order to increase efficiency of the methodology, in section 4 we
present the results of the experiments with the ModelNet40 dataset
and original X3D scenes in webpages, in section 5 we present our
conclusions for the implementation of the methodology as well as
future work..

2 THE DEEP LEARNING ARCHITECTURE
The architecture we use is mainly based on the PointNet algorithm.
PointNet is an innovative, highly efficient net that uses neural
networks to detect 3D objects without rendering. It was created
by the team of Stanford University [Qi 2020] to provide several
applications for scene semantic parsing to object classification.

The basic idea of this algorithm for classification and segmenta-
tion of unordered point clouds is to estimate the distance between
points. This allows us to condense points that are close together by
grouping them in small “boxes”. This method may be used to sum-
marize geometric information and eventually label the complete
point neighborhood.

The diagram in Figure 1 shows the architecture of PointNet. More
specifically the classification network maps each of the n points
from 3 dimensions to 64 dimensions by using a shared multi-layer
perceptron. Each of the n points has its own multi-layer perceptron
(A on diagram). Similarly, each n point is transferred from 64 to 1024
dimensions in the following layer (B on diagram). A max pooling is
further used to construct a Global Feature Vector in R∧1024 (C on
diagram). Finally, the Global Feature Vector is mapped to k output
classification scores using a three-layer fully connected network
(FCN) (D on diagram). Each of the n input points in the segmenta-
tion network must be allocated to one of k segmentation classes.
Segmentation relies on both local and global features, the points
in the 64-dimensional embedding space (local point features) are
concatenated with the global feature vector (global point features)
to produce a per-point vector in R∧1024 . In other words, after
computing the global feature vector, the algorithm feeds it back to
the point feature by concatenating global features with per point
features to get the desired outcome. This approach can anticipate
per-point quantities by relying on both global and local semantics.
MLPs are used on the n points to reduce the dimensionality from
1088 to 128 and subsequently to m, resulting in an array of n x m.

Figure 2: PointNet extracts the critical points (skeleton) of
the cloud.

The Global Feature Vector may be used to derive a significant
amount of intuition. To begin, as previously stated, the dimension-
ality of the vector, referred to as the critical dimension and denoted
by K, is directly related to the expressiveness of the model. Natu-
rally, a higher K value leads to a more complicated — and, more
importantly, correct — model, and vice versa. K=1024, for example,
is used in the design of PointNet. Also keep in mind that the feature
vector was the outcome of a well-thought-out symmetric function
(for permutation invariance). PointNet employs maximum pooling.
The output of max pooling compresses the n points in the input
point cloud to a subset of points, similar to how the max operator
compresses numerous real-valued inputs to a single value. In reality,
the global feature vector can be contributed to by no more than K
points. The critical point set is made up of points that contribute to
and define the Global Feature Vector, and it encodes the input with
a sparse collection of key points.

More intriguingly, the network learns to summarize an input
point cloud by using a sparse collection of important points, which
closely matches to the skeleton of objects according to visualization.
The original shape of an object is represented as a dense cloud of
points and the critical points are created in the areas where the
highest density is found, therefore the skeleton of the object.

2.1 Training and Deploying machine learning
model into a website

To display a machine learningmodel in a website you need to decide
whether to use a trained model or train it into a website. In our
case we imported a pre-trained model.

For the needs of training we useModelNet40, a large dataset with
40 classes of 3D objects. By following the PointNet architecture and
its implementation with Google TensorFlow in Keras framework,
we built the model to handle point clouds with a constant number
of points. Then we set a batch size equal to 32 and train the neural
network for 20 epochs. This means that the whole dataset is orga-
nized in groups of 32 clouds and each of them goes through our
network exactly 20 times.

For running the Deep Learning algorithm in the webpage we use
a converter implemented in Tensorflow.js, an open-source toolkit
that uses Javascript and a high-level layers API to create, train,
and run machine learning models fully in the web. So we save our
trained neural network (“model”) in “.json” format.
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Figure 3: The four individual scenes we use to evaluate the performance of the proposed methodology. The examples are
available also in https://www.medialab.hmu.gr/minipages/3DRtree/

3 REAL TIME GEOMETRY CONDITIONING
3.1 Resampling
Our trained model takes a constant number of points as input and
outputs the predicted result. Thus all the objects we wish to predict
by our algorithm need to have the same number of points with the
ones we used for training. However, web3D models are expected
to have different and random numbers of points. Thus, in order to
predict such objects we need to equalize the number of points of
each one of them by increasing or decreasing their point clouds
where it is necessary. To achieve this task we first set a “target”
value that equals the final number of points we wish for each object.
Then we raise three cases.

• In the first case the object has a greater number of points
than the “target” so we down sample the points until the
length equals “target”.

• In the second case the number of object points are less than
the “target”. In that case we oversample each point cloud.

• Finally, if the number of points equals to “target” value we
save the point cloud as it is.

On the other hand PointNet predicts better when the point clouds
are rather homogenously distributed in the volume (similarly to
laser scanner point clouds). However, the point clouds we can get
from “.x3d” objects are sparse because they are intensively “light”
in number of points since they are mostly for the web. Sparsity is
a factor that can confuse PointNet and lead the prediction to the
wrong result due to the inability of exporting critical (skeleton)
points. For this reason we over sample points in “.x3d” models by
interpolating points inside faces, triangles or squares that form the
surface of an object, by using data from IndexedFaceSet. Mainly we
are using a modification of the Wolfram Mathworld Triangle Point
Picking [Wolfram 2022]

𝑥 = 𝑎1𝑣1 + 𝑎2𝑣2 (1)

, where𝑣1,𝑣2 are two vertices of a triangle, the third vertex is at the
origin, and 𝑎1,𝑎2 are uniform varieties in the interval [0 , 1]. In our
case, we found the minimum and the maximum value of each of
the tree axis and we add points to this bounds, then toachieve a
better distribution of points, we fill the areas with points in random

https://www.medialab.hmu.gr/minipages/3DRtree/
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positions and in density that is related to the area of each face.

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑎𝑟𝑒𝑎 =
1
2
[𝑥1 (𝑦2 − 𝑦3) + 𝑥2 (𝑦3 − 𝑦1) + 𝑥3 (𝑦1 − 𝑦2)] (2)

Thus with (2) we add more points to bigger areas and less points to
smaller areas.

4 EXPERIMENTAL RESULTS
We evaluate the performance of PointNet in “.x3d” object by do-
ing two different experiments. In the first experiment (Case 1) we
evaluate efficiency of the algorithm in classification prediction of
several types of 3D model from the ModelNet40 dataset that has
been transformed to X3D format. In the second test (Case 2) we
created four X3D scenes with different objects and we evaluate the
classification results.

Training of the Deep learning algorithm was executed with
ModelNet40 models in different number of points and different
epochs. In Table 1 there are the two different configurations of the
dataset and the corresponding training accuracy. The Accuracy is
rather lower than expected because we feed the training set with all
the ModelNet40 (40 classes, ∼800 models in each class for training)
and all these in two different point densities (3000 points and 6144
points). The lager the number of the training classes the lower the
expected accuracy.

The execution of prediction experiments are running in webpage
environment in order to evaluate our methodology but also to
evaluate the feasibility of running the algorithm in the web browser
environment.

4.1 Case 1: Evaluation of the algorithm in the
classification of individual X3D models

In Table 2 we present the results of the experiments we made with
the algorithm that has been trained for different kind of point
densities and for 20 epochs which shows better training accuracy.
All the models are in X3D format.

The experiments has been applied to several classes of 3Dmodels
(chairs, sofa, table, bathtub, bed, book, guitar, lamp, piano, plant,
sink, stand). For each class we pick 10 3D models from the Model-
Net40 testing dataset (different than training dataset we used for
training) and 10 models randomly from the internet. The results
in Table 2 reflect the percentage of positive predictions, Average
Precision in detection of the correct class during the tests. The clas-
sification prediction efficiency appears to be over 80% in most of the
cases. Of course classification performance is related to geometric
complexity of the model we are testing. For example a piano or a
plant is more complicated geometry of a sofa or a table. Also it is
interesting to notice that performance is higher in the classifica-
tion of low point models and decreases as the number of points
increases.

It is obvious that the closer the number of points of the tested
models to the number of points that we trained the Deep-Learning
algorithm the better the performance.

The corresponding Mean Average Precision in case of MeshNet
algorithm in [Feng et al., 2018] is 81.9, however anyway, the per-
formance as we already mention has to do with complexity of the
models and the possibilities of classes the algorithm has to predict.

Table 1: Training Configuration

Points Epoch Accuracy

3000 10 76.35%
3000 20 78.26%
6144 10 73.96%
6144 20 75.04%

Table 2: Classification performance (Average Precision(%))
(*MAP=Mean Average Precision)

Points chairs Sofa Table bathtub Bed Book

3000 80 85 90 85 90 80
6144 85 95 95 100 95 90
9000 85 80 90 95 90 90

Points Guitar Piano Plant Sink Stand MAP*

3000 80 65 65 80 85 80.45
6144 90 65 65 80 85 85,9
9000 90 75 75 80 85 85

4.2 Case 2: Evaluation of the algorithm to
complex X3D scenes with different models
in the same scene

In the second case we created four scenes with different models
appear in each one of them (Figure 3).

In Table 3 we present the results of the evaluation. We may
notice that scenes with models that have been predicted accurately
in Table 2 have higher rate of prediction in Table 3 as well.

The results of the above tables are showing us that:
a) Typical X3Dmodels are not dense enough in order to achieve

high prediction accuracy during classification process, thus
resampling is required.

b) The closer is the number of points of the testing models
(enhanced X3D models) to the number of points of the train-
ing models the better is the accuracy we achieve. Here the
training set contains models with 6144 points. So as we can
see by the results, in general the better efficiency is achieved
when testing models has number of points closer to 6144
total points.

c) In some of the above cases objects were correlated with
classes that do not match their appearance. PointNet algo-
rithm is not using surface or appearance characteristics in
order to classify models. Instead it is using Global Feature
Vector which is extracted by Max-Pooling to a transformed
version of the point set.

5 CONCLUSIONS
In this paper we are studying the capability of X3D models to
work in a deep learning environment. We are using a point set
classification algorithm because it is more appropriate for dynam-
ically created models from sensor scanning or photogrammetry.
We choose X3D models because they are semantic friendly which
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Table 3: Complex X3D scenes objects prediction (Figure 3)

Points Scene 1 Scene 2 Scene 3 Scene 4

3000 5 correct in 7 objects 3 correct in 6 objects 3 correct in 4 objects 4 correct in 7 objects
6144 5 correct in 7 objects 4 correct in 6 objects 3 correct in 4 objects 5 correct in 7 objects
9000 4 correct in 7 objects 4 correct in 6 objects 3 correct in 4 objects 4 correct in 7 objects

is a feature valuable in the modern information society. In our re-
sults we show that X3D models enhanced with some resampling
of the vertices, especially in models with large polygons, are capa-
ble enough to work with deep learning algorithms. So the major
contribution of this work is that we prove that PointNet algorithm
can be used for meshes as well as for point clouds having similar
performance to one of the latest meshes classifications algorithm.
Even more we show that even sparse meshes like those in Web3D
can be classified as well. This conclusion creates new opportunities
in the use of X3D as a modeling language of real time scanning
created and annotated scenes. In our future work we will focus on
segmentation of point sets and the adoption of X3D format as a
point set declaration format.
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