
TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

SCHOOL OF APPLIED TECHNOLOGY

DEPARTMENT OF INFORMATICS ENGINEERING

White Paper

Algorithms and processes for progressive graphics
applications

Paschalis Dedousis – R.N.: 2903

Supervisor professor: Dr. Athanasios G. Malamos

Evaluation commission: -

Presentation date: -

ii

Table of Contents

Abstract ... v
Σύνοψη .. vi
Chapter – 1 ... 7

1.1 - Introduction and previous work .. 7
1.2 - Problem definition .. 11
1.3 - Solution Approach .. 14

Chapter – 2 ... 17
2.1 – Background research .. 17
2.2 – 3D Models and Polygon Meshes ... 17
2.3 – X3D’s IndexedFaceSet Node .. 21
2.4 – More sophisticated mesh data structures .. 22

2.4.1 – Winged Edge data structure .. 23
2.4.2 – Half Edge data structure .. 27
2.4.3 – Lath based data structures .. 31

2.5 – Level of Detail ... 33
2.5.1 – Discrete LOD Framework .. 35
2.5.3 – Continuous LOD Framework ... 40

2.6 – Delta Compression .. 43
Chapter – 3 ... 49

3.1 – Implementation .. 49
3.1.1 – Server overview ... 49
3.1.2 – Discrete LOD framework UI ... 51
3.1.3 – Continuous LOD framework UI .. 54
3.1.4 – Client with MPEG-DASH enabled X3D scene 56
3.1.5 – Results in numbers .. 62

3.2– Summary, conclusions and future work .. 69
References ... 71

Table of Figures

 Figure 1: The more the fidelity, the more the cost to transmit 10
 Figure 2: Proposed system overview ... 15
 Figure 3: ... 18
 Figure 4: Relationship between vertices, edges and faces. 19
 Figure 5: ... 19
 Figure 6: ... 20
 Figure 7 : (a) is a Vertex-Vertex mesh, (b) is a Face-Vertex mesh. 21
 Figure 8: A code example of the IndexedFaceSet node 22
 Figure 9: Winged Edge overview ... 23

iii

 Figure 10: The effects of applying the MKFE and KLFE procedures 25
 Figure 11: Half-edge overview [Zcg12] .. 29
 Figure 12: Illustrated Half-Edge enumerated list of references [BSBK02] 30
 Figure 13 [JLM03] .. 31
 Figure 14 [JLM03] The laths form two kinds of loops, a clockwise around a
vertex and a counter-clockwise inside a face. ... 32
 Figure 15 An example of a alpha-blending transition. Taken from [SW08] 38
 Figure 16: Metamesh’s size [LDSS99] ... 38
 Figure 17: Example of mesh morphing [LDSS99] .. 39
 Figure 18: Source to target vertices correspondence (green arrows) and target
to source mesh vertices correspondence (red arrow) [Par05] 39
 Figure 19: The visual discontinuities are marked as yellow lines [Hp96] 40
 Figure 20 edge collapse and vertex split transformations [Hp96] 40
 Figure 21 [PR00] .. 42
 Figure 22: [LJBA13] cell merge and cell split operations 43
 Figure 23: Git GUI - Visualization of edits of a file .. 45
 Figure 24: OpenGL commands transmission from master to slave computer
[GMBTB11] ... 46
 Figure 25: Transformations diagram [RFC3229] .. 48
 Figure 26: Request example [RFC3229] .. 48
 Figure 27: The server's package.json file ... 50
 Figure 28: Web application's first screen ... 51
 Figure 29: Discrete LOD framework upload screen ... 52
 Figure 30: Directions screen .. 53
 Figure 31: Model selection screen ... 54
 Figure 32: LOD editor .. 55
 Figure 33: Code that observes and selects the next LOD 57
 Figure 34: Code that requests and applies the LODs .. 58
 Figure 35: Example of using the player .. 59
 Figure 36: Client during runtime showing two low LOD models 60
 Figure 37: Client during runtime showing two high LOD models 61
 Figure 38: Graph of the Bunny’s transmitted bytes using the DLOD framework 62
 Figure 39: Graph of the Suzanne’s transmitted bytes using the DLOD
framework ... 63
 Figure 40: Graph of the Happy Buddha’s transmitted bytes using the DLOD
framework ... 64
 Figure 41: Graph of the Dragon’s transmitted bytes using the DLOD
framework ... 65
 Figure 42: Graph of the Armadillo’s transmitted bytes using the DLOD
framework ... 66
 Figure 43: Graph of average savings of all the tested models using the DLOD
framework ... 67
 Figure 44: Results table of the Suzanne's model using the CLOD framework ... 68

iv

 Figure 45: Graph of the Suzanne's transmitted bytes using the CLOD
framework ... 68

Table of Tables

 Table 1: Results table of the Bunny model using the DLOD framework 62
 Table 2: Results table of the Suzanne model using the DLOD framework 63
 Table 3: Results table of the Happy Buddha’s model using the DLOD
framework ... 64
 Table 4: Results table of the Dragon’s model using the DLOD framework 65
 Table 5: Results table of the Armadillo’s model using the DLOD framework 66
 Table 6: Average savings of all the tested models using the DLOD framework . 67

v

Abstract

 In previous work an integrated adaptation framework has been proposed for the

Web3D, using the X3D and the MPEG-DASH standards. By fusing those two, one can

deliver multimedia content adaptively in X3D scenes following the HTML5’s plug-in free mind

set. Since then, a problem remains of how to have a good network utilization when delivering

refined or coarser versions of 3D models by only using open and royalty free web standards

and without destroying the X3D’s human readable representation form.

 When transmitting different levels of detail of a 3D model, we need to do it in a

cumulative manner, thus preserving common geometry data. Considering the

programmatically created and the hand crafted level of detail techniques, we need a way to

support those two by offering an integrated solution based on current or emerging web

standards.

 Programmatically creating levels of detail, often needs the change of the 3D model’s

data structure. This means that the content provider and the content consumer must agree

for the what and how to implement before runtime, thus driving into case per case solutions.

Also, when following the hand-crafted approach, chances are that there is common geometry

data in-between the levels of detail. So when delivering them as individual entities will result

into poor bandwidth utilization.

 To alleviate these issues we will consider a context agnostic approach, namely delta

encoding or delta compression, for transmitting levels of detail of 3D models in a unified

environment.

vi

Σύνοψη

 Σε προηγούμενη δουλειά έχει προταθεί ένα ολοκληρωμένο σύστημα προσαρμόσιμου

πολυμεσικού υλικού για το Web3D χρησιμοποιώντας τα πρότυπα X3D και MPEG-DASH.

Συνδυάζοντας αυτά τα δύο, μπορούμε να πραγματοποιήσουμε μετάδοση προσαρμόσιμου

πολυμεσικού υλικού σε X3D σκηνές ακολουθώντας μια λογική η οποία είναι ελεύθερη από

αρθρώματα. Ένα πρόβλημα που παραμένει όμως είναι το πώς μπορούμε να έχουμε μια

καλή εκμετάλλευση του δικτύου όταν μεταδίδουμε διαφορετικά επίπεδα ποιότητας 3Δ

γραφικών χρησιμοποιώντας μόνο ανοιχτά πρότυπα και χωρίς να αλλάξουμε την αναγνώσιμη

από ανθρώπους μορφή περιγραφής του X3D.

 Όταν μεταδίδουμε διαφορετικά επίπεδα ποιότητας 3Δ γραφικών πρέπει να το

κάνουμε με έναν συσσωρευτικό τρόπο έτσι ώστε να μπορούμε να επαναχρησιμοποιήσουμε

τα κοινά δεδομένα γεωμετρίας. Έχοντας ως βάση την δημιουργία επιπέδων ποιότητας με

προγραμματιστικό τρόπο αλλά και με το χέρι, χρειαζόμαστε μια ολοκληρωμένη λύση που να

μπορεί να υποστηρίξει αυτές τις δύο διαφορετικές μεθοδολογίες και η οποία θα βασίζεται σε

σύγχρονα και αναδυόμενα πρότυπα.

 Ο προγραμματιστικός τρόπος δημιουργίας επιπέδων ποιότητας συνήθως απαιτεί την

αλλαγή της δομής δεδομένων που χρησιμοποιείται για την περιγραφή του 3Δ μοντέλου. Αυτό

σημαίνει πως ο πάροχος και ο καταναλωτής του περιεχομένου πρέπει να συμφωνήσουν εκ

των προτέρων για το τι και το πως θα υλοποιηθεί. Με αυτόν τον τρόπο οδηγούμαστε σε ανά

περίπτωση υλοποιήσεις. Επίσης όταν χρησιμοποιούμε την δεύτερη μεθοδολογία δημιουργίας

επιπέδων ποιότητας, οι πιθανότητες είναι πως θα έχουμε κοινή πληροφορία μεταξύ των

επιπέδων. Οπότε αν μεταδώσουμε τα επίπεδα αυτά ως ανεξάρτητες οντότητες θα έχουμε

χαμηλή εκμετάλλευση του δικτύου.

 Για να ξεπεράσουμε τα θέματα αυτά προτείνουμε μια προσέγγιση του προβλήματος

στην οποία το μεταδιδόμενο περιεχόμενο θα μας είναι αδιάφορο. Πιο συγκεκριμένα, στο

ολοκληρωμένο περιβάλλον μετάδοσης 3Δ γραφικών που θα δώσουμε θα χρησιμοποιήσουμε

συμπίεση δέλτα.

7

Chapter – 1

1.1 - Introduction and previous work

 Recent advancements in Web technologies, offer the ability to deliver multimedia

content in a heterogeneous environment of platforms and devices. To achieve this, a great

number of standards has been introduced, although not all of them are implemented on a

large scale or exploited on their full potential.

 For many years, multimedia content delivery and interaction over the web was mostly

supported by using proprietary, closed source solutions. The most notable example is the

Adobe’s, Adobe Flash Player, a freeware plug-in that enables audio and video, as well as

vector, raster and 3D graphics support for the web browser. Although serving it’s purpose

well over the years, one of the disadvantages of this approach is that it breaks

interoperability. In the list of HTML elements [WHV14] of the latest HTML specification there

are some interesting elements, at least from the perspective of the multimedia field, that offer

native support of audio, video and graphics in the browser. Specifically, in the subcategory of

embedded content lie the audio and video elements and in the scripting subcategory lies the

canvas element.

 Today’s client side scene is formed not only by the well known desktop computers.

New portable devices came into, such as smart phones and tablet computers, that are

connected to the web using wireless and often unreliable connections. In addition to that they

have limited processing power, reliance on battery and limited viewing capabilities mostly

due to their size, the goal of achieving a good QoE becomes even harder. One of the

approaches and sometimes combined with others to alleviate this issue, adaptive bitrate

streaming is used.

 Adaptive bitrate streaming is a technique for streaming multimedia content over a

network to the client in an adaptive manner. Meaning that while streaming, the content is

adapted according to the client’s processing power and network bandwidth capabilities.

Some implementations of adaptive bitrate streaming include the Adobe HTTP Dynamic

Streaming, Apple HTTP Live Streaming and the Microsoft Smooth Streaming. None of them

is a standard though, meaning that they fail interoperability wise. To overcome this,

companies like Microsoft, Apple, Netflix and others, participated in the standardization of the

MPEG-DASH, an industry oriented, open and international standard. In addition, the MPEG-

DASH delivers content using the HTTP protocol, so content can be delivered using the

already widely used and well adopted HTTP over TCP [IRS11] [SAC11] .

8

 The directions of how an MPEG-DASH client can switch between different quality

media streams are described in an MPD file. The MPD can be obtained usually via the web

and is an XML, human readable file. In fact, in the sense that MPEG-DASH and HTML5

technologies can be complementing when consuming media content, the DASH-IF

developed a Javascript player for the browser, for supporting adaptive video capabilities.

 X3D is an open, royalty free ISO standard managed by the Web3D Consortium, that

represents 3D graphics in XML format, readable by both humans and computers, that is

supported by stand-alone implementations or browser plug-ins, at least until recently. To

overcome the disadvantages of using browser plug-ins, Behr et al. [BEJZ09] presented the

X3DOM, a DOM based model that gives a seamless integration between X3D and HTML5

without using plug-ins.

 On their first attempt to extend the X3DOM’s adaptation methods, Kapetanakis et al.

in [KPMZ14] provide a mechanism of adaptive HD video inside 3D virtual reality worlds by

merging it with MPEG-DASH. The offered implementation consists of extending the

X3DOM’s MovieTexture element to work with the DASH video player [GIT14][ML14] .

 Although the MPEG-DASH was designed to be primarily used for temporal content,

such as audio and video, it does not explicitly restrict the media type that can be used. Given

that the X3D is an ISO standard and that the model/x3d+xml is a registered MIME type, 3D

models written in X3D should be compatible with the MPEG-DASH. Based on this,

Kapetanakis in his thesis [KK14], extends the previous mechanism in order to additionally

support adaptive 3D model delivery. In his work he also describes how the 3D models should

be treated so they can be successfully included in an MPD file. As an overview, the 3D

models are segmented into levels of detail and can be sequentially transmitted to the client.

Also the client can adapt the 3D model by requesting the corresponding segment, or level of

detail.

 This work only suggested the first steps into creating such an adaptation system and

only supported simple cases where only a single 3D model was included into an X3D scene.

Zamploglou et al. in [ZKSMP16] continue the research on the potential of supporting

adaptive streaming of complex X3D scenes, where a plethora of geometries, audio, image

and video textures are included.

 An issue that remains though, is how to have a good network utilization when

transmitting different segments, or levels of detail, described in the MPD. To give a solution

approach to that, first we have to have an understanding of the term LOD of a 3D model. The

first ideas of the LOD were introduced by J. Clark [JHC76] and in a sense is technique for

representing an object with different geometry complexities. The goal of this technique is to

reduce the representation complexity of an object in order to reduce computation

requirements when such resources cannot be met or when the object is viewed from a far

distance. There is no restriction to that the LOD technique can only be used for the geometry

of a model, it can also be applied to shaders and texture maps, but in this work we are

9

interested in the model’s geometry. A qualitative graphical representation, describing the

fidelity and the geometry complexity relationship, is given on Figure 1.

 There are three basic approaches or frameworks of LOD and these are the discrete,

continuous and view-dependent LODs. In the case of the discrete LOD, the object is

separated into some number of individual models of different fidelity before the runtime.

Usually, those LODs are hand-crafted by a graphics artist(s), if not exported by some mesh

simplification algorithm implementation. Using this approach, gives us the ability to control of

what will be viewed to the user. On the contrary, in the continuous LOD case, the model is

encoded in a data structure such that we can extract the desired LOD from a continuous

spectrum of LODs. This approach gives better granularity and minimizes the popping effect

when changing LOD. Also, the case of the view-dependent LOD can be considered as an

extension of the continuous LOD, in the sense that the geometry simplification varies in

different areas of the model, usually according to the camera – area distance. Such an

example is when viewing a terrain, where areas closer to the camera have more geometry

information than areas that are farther away.

10

Figure 1: The more the fidelity, the more the cost to transmit

11

1.2 - Problem definition

 The main goal of this thesis is to give a solution approach that changes, in the sense

of extending the X3D’s already defined nodes, are kept at the most minimal if not non

existent all. Further more, the standard uses a representation form about the vertices and the

edges of the model, that is human readable and we wish to keep it that way. In addition, we

want to support both the discrete and the continuous LOD frameworks in our solution.

 Also, the MPEG-DASH player developer is already occupied with solving problems

such as content adaptation in real time. So it is quite important to offer a simple API for the

12

delivery of the adaptive models. To achieve this, our solution should support the two different

LOD frameworks in a unified way.

 As an X3D client, we will use the X3DOM client that was mentioned above, but let’s

not forget that the X3DOM is only one of the many implementations of the X3D standard that

exist. A reference list of the currently available implementations can be found in [X3DP16].

This makes it vital that our solution is based on standards and is not focused only on a single

X3D client.

 As described in the previous section, continuous LOD frameworks encode the model

in a data structure such that it allows the implementation of some geometry simplification

algorithm and the extraction of the desired LOD. The issue with this approach is that there

are no standard data structures and algorithms that are used among all implementations. A

commonly used one though, is the half edge data structure. In addition, some of them,

encode the model in some binary form, thus destroying the X3D’s human readable

representation form. This could not be a quite bad thing, considering the gain in

performance, but some binary forms are proprietary and not freely available, so they break

the open standard mind set.

 The need for using more sophisticated data structures, other than usual X3D’s

indexed face set, comes from the need that these algorithms depend on queries about the

geometry and connectivity of the model. These queries are mostly about the adjacency and

incidence of the building blocks of the model. For example, queries such as which faces

share a particular vertex, or which edges are adjacent. Of course, such information can be

extracted even with the X3D’s indexed face set, but this data structure is not designed to

store any kind of explicit information to satisfy these queries quickly, without having to

traverse the model’s geometry and connectivity repeatedly for every single query during the

run time.

 In Mauro Figueiredo et al. [FRSV14] a framework that supports interactive topology

queries on 3D models is presented. The given open source implementation, named TopTri,

allows 3D web client applications to make queries about vertex, edge and face adjacency

and incidence on the web server without the need of changing the model’s data structure

that is already used on the client. Instead the web server is responsible for such operations.

Although implemented in the Python scripting language, the web server is satisfying fast

enough to serve those queries even for large models and real time applications. While

testing their proposed framework, Mauro Figueiredo et al. did not use any kind of continuous

LOD algorithm as their test bench. Instead they implemented algorithms that can identify

stalactites in a cave, using the web browser as the client runtime environment.

 The TopTri toolkit, relieves the client from implementing a sophisticated data

structure for continuous LOD, so it seems that is suitable for our needs. A solution approach

for our system for transmitting adaptive 3D models, using that framework, is not fully

investigated yet. Thus we are in a position that we can not give a clear answer about the

13

level of changes that have to be made to the client, in order to at least support only the

continuous LOD framework.

 As for the discrete LOD framework, the geometry and connectivity between different

levels of detail is disjoint. So there is not an obvious or straightforward approach to support

a transmission that is free of redundant geometry information. A first approach that we

considered in order to send only the changes that have to be made to reconstruct the target

mesh, was to use a technique named geomorping or mesh interpolation or metamorphosis.

This technique is widely used where there is the need to express a smooth transition

between two models. For example an animation of an infant growing up to an adult or the

transition between different facial expressions. In particular, from the perspective of LOD, it is

used to eliminate or at least minimize the popping effect when changing the level of detail.

 As in [Par05], there are three main steps that are followed to achieve a multi-

resolution mesh morphing. First we need to find correspondence between the vertices of the

source mesh to the target mesh. Note that vertex to vertex correspondence cannot be

always achieved because the two meshes may have different number of vertices. So we

compromise with some arbitrary point in 3D space near the source – target mesh. The same

step has to be repeated in the opposite direction in order to find the vertices correspondence

between the target and the source mesh this time. Finally we merge the connectivity of the

two input meshes in order to produce a new mesh representation that shares the

connectivity of these two meshes. This new mesh representation is often called the

supermesh. Now using the produced supermesh we can bidirectionally interpolate between

the two meshes.

 As a rough calculation of the memory size that the supermesh requires, without

considering the memory cost for the connectivity, we have:

𝐵𝑦𝑡𝑒𝑠(𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦(𝑠𝑢𝑝𝑒𝑟𝑚𝑒𝑠ℎ)) = 𝑏(𝑁(𝑉𝑠) + 𝑁(𝑉𝑡))

Where b is the number of bytes required to store a single vertex, N(Vs) the number of

vertices of the source mesh and N(Vt) the number of vertices of the target mesh. So we

concluded that this size of overhead leads to an unworkable scenario. This led us to leave

the investigation of this solution approach quite early. Even though we did not follow this path

in this thesis, we do not completely reject the probability of a solution based on morphing

between arbitrary and multi-resolution meshes exists.

 Talking about the changes that have to made in order to reconstruct the target mesh,

having the current mesh as the reference mesh, we came up with the idea of applying delta

encoding. Delta encoding or delta compression, also known as delta differencing in its more

general description, is a technique for describing a sequence of input entities in the form of

differences between them. By doing that, data that is common in-between the entities is not

repeated, thus reducing the requirements of storage space, or bandwidth if we are in the

case of transmission. An every day example that delta compression is used is the case of

remote file synchronization.

14

 Chun in [Wc12] is dealing with the transmission of 3D models in WebGL scenes

over HTTP for the Google Body project. Having in mind that the GZIP algorithm was

primarily designed for compressing text input, LZ77 phrase matching will most likely fail with

something that is not structured, like in our case lists of vertices and indices. In order to

optimize the model for compression, Chun approaches the vertices and indices data as

signals and uses delta encoding.

 Now in the sense that a web resource may change over time and that the new

instance of that resource will most likely be similar with the older one, Mogul et al. [MDFK97]

discuss and quantify the potential benefits of using delta encoding and delta compression for

HTTP responses and their results are encouraging. In K. Psounis’s work [Pks02] dynamically

created web content is separated into base documents, named as classes, and content

responses are sent in the form of deltas. Experimental results of his work show that by using

the class-based delta model, bandwidth consumption is reduced by a factor of 30.

 The Chromium [Chr02] project, the descendant of WireGL [WG01] , offers a

framework for scalable cluster rendering. In a sense, the client sends frames of OpenGL

commands to be rendered by a cluster of workstations on its behalf. Gasparello et al. in

[GMBTB11] deal with the distribution of OpenGL command streams over a network by using

their own Chromium-like system as their base framework. In order to have a good network

utilization, they propose the use of in-frame and inter-frame compression. Inter-frame

compression aims on eliminating or at least reduce the redundant data that exist between

consecutively frames. For example and in the case of a scene where there is only one

moving object, lets say the camera, only the translation commands need to be streamed.

They achieve this by using the open-vcdiff tool, an open source implementation of the

VCDIFF delta encoding algorithm and file format.

 The RFC 3229 proposed standard as its current state [RFC3229], introduces delta

encoding in HTTP. The RFC 3229 tries to deal with problem of serving slightly and frequently

modified resources for which the client already has one or more older instances in its cache.

Based on the observation that the modification of a resource is much smaller then the

resource itself, this RFC proposes delta encoding to be used in such cases, avoiding that

way of sending redundant bytes on the response.

 Although the RFC 3229 works well for same URL responses, it is not suitable for

content that is dynamically created with varying URL query parameters. For example search

results pages. To overcome this limitation, Butler et al. in [BLM16] propose the SDCH ,

pronounced as “sandwich” [Li15] , protocol. In their proposal, a dictionary file is shared

between the server and the client, containing strings that have high chances of appearing in

future HTTP responses. If both sides support SDCH and the client does not have any

dictionary from server, or has an outdated version, the latest dictionary file is sent out of

band. If both sides support SDCH and the client has a valid copy of the dictionary, then the

HTTP response is represented as references to strings in the shared dictionary. The

compression scheme is named as SDCH encoding and is VCDIFF based.

15

1.3 - Solution Approach

 Even though there is some work done about data and mostly web page content

transmission over the Internet by using delta encoding, there is no work, at least in our

knowledge, that explicitly covers transmission of 3D models and their levels of detail over

HTTP based on this technique. Nevertheless the adoption promise of delta encoded HTTP

responses is quite encouraging.

 The main advantage of using this kind of technique, from our point of view, is that

without extending or modifying the X3D standard we can support the discrete and continuous

level of detail frameworks simultaneously. Fulfilling that way the two promises that were

given for offering support of the two different LOD frameworks in a unified way and keeping

the need for changes minimal. In fact, in this work the X3D standard was kept as is.

 We can also fulfill the promise of not altering the human readable representation

form that the X3D uses for describing 3D models. More precisely the IndexedFaceSet node.

Additionally and given that the delta compression is a context agnostic compression scheme

we can also support binary formats and scene assets other than 3D models, even though

this was not our goal.

16

 Even though we are aware that by implementing a solution that already exists in the

literature of the continuous framework might yield better performance results and smaller

network bandwidth requirements, we follow an ubiquity and interoperability over performance

solution approach. An overview graphical representation of our proposed solution is given on

Figure 2.

 As we can see on Figure 2 and on the client’s side, we have the X3D client using an

MPEG-DASH adaptation mechanism. This adaptation mechanism is responsible for taking

performance metrics and adapting the LOD of the models which are described in the MPD

file. In the case that the desired LOD does not exist on the client, the MPEG-DASH

adaptation mechanism sends the appropriate request to the server using HTTP and

additionally advertises the current LOD that already has and on which the delta patch will be

applied on.

 On the server’s side, when that kind of request arrives, the LOD Framework

mechanism extracts the requested LOD. Then the delta between the requesting LOD and

the current LOD that the client already has is computed and sent to the client as an HTTP

response.

Figure 2: Proposed system overview

17

 Architecture wise, our proposed solution has the advantage of minimal changes on

the web server that serves the scene assets. That is because the LOD Framework

mechanism can be added in the current configuration in the form of a module.

Chapter – 2

2.1 – Background research

 In this chapter we are going to present the background research that has been

made. First we will make ourselves familiar with what is a 3D model and how it is

represented as a polygon mesh. Next, we will discuss some useful data structures for storing

polygon meshes that we can use to extract the desired fidelity of the 3D model using the

continuous level of detail framework.

 In general, the extraction of the desired fidelity is achieved by using a mesh

simplification algorithm that consecutively simplifies the model starting from the original

version until the most coarse version is reached. Then we encode the steps that were taken

in a way such that we can extract the desired level of detail at any given time.

 We will also present the small research that has been made about geomorhping. As

mentioned earlier in the previous chapter the geomorphing technique was investigated as a

18

solution approach for delivering the model’s levels of detail. But the – roughly - calculated

overhead that is required for the transmission is discouraging.

2.2 – 3D Models and Polygon Meshes

 A thee dimensional model, or 3D model is a mathematical representation of a three

dimensional surface. These models can be created manually by using a 3D designing

software for example, or by 3D scanning of real world objects. The most widely

representation scheme used for 3D models is the polygon mesh.

 The polygon mesh is a mesh of vertices, edges and faces that describe a polyhedron

object. The vertices are points in 3D space that are described by their coordinates, for

example Vn = (xn , yn , zn) . The edges are straight lines that connect two vertices and can be

described as En = (Va , Vb) . Faces are simple convex or concave polygons. A simple

polygon is a polygon that consists of non-intersecting line segments, or in other words there

are no pairs of edges that cross each other. In a convex polygon, there is no internal angle

that exceeds 180o , in a concave polygon there is at least one internal angle that is larger

than 180o . In computer graphics, the most used type of faces is the triangle and more rarely

quadrilaterals, faces with four vertices and edges. Figure 3 gives an example of simple and

complex polygons. Figure 4 gives a graphical representation of the relationships between the

vertices, edges and faces.

 The connectivity or the topology of a mesh refers to how the vertices are connected

in order to form the edges and faces of the mesh. The geometry of a mesh refers to the

coordinates of the vertices. Thus for a given 3D conceptual representation of an object we

can have different meshes with the same geometry and different topology. Figure 5 gives a

graphical representation about the geometry and topology of a mesh.

 Meshes can be manifold or non-manifold. A mesh can be considered manifold if

every edge touches only one or two faces and faces that are incident to a vertex form a

closed or an open fan. Also in a non-manifold mesh, adjacent faces can share o single vertex

without sharing an edge. Some mesh simplification algorithms require only manifold meshes

as an input. Figure 6 gives a visual representation about manifold and non-manifold meshes.

19

Figure 3:

Polygons (a) and (b) are simple polygons.

Polygon (c) is a complex polygon.

Polygon (a) is convex.

Polygon (b) is concave.

The shapes were taken from:

https://en.wikipedia.org/wiki/Convex_polygon#/media/File:Pentagon.svg

https://en.wikipedia.org/wiki/Concave_polygon#/media/File:Simple_polygon.svg

https://en.wikipedia.org/wiki/Complex_polygon#/media/File:Complex_polygon.svg

https://en.wikipedia.org/wiki/Convex_polygon#/media/File:Pentagon.svg
https://en.wikipedia.org/wiki/Concave_polygon#/media/File:Simple_polygon.svg

20

Figure 4: Relationship between vertices, edges and faces. This figure is a part from

https://en.wikipedia.org/wiki/Polygon_mesh#/media/File:Mesh_overview.svg

Figure 5:

In (a) we have same geometry with different topology.

In (b) we have same topology with different geometry.

Imagery taken from: http://www.cs.dartmouth.edu/~cs77/slides/07_meshes.pdf

21

 There are two main representation schemes of polygon meshes that are used,

among others. First we have the explicit vertex list representation, also known as Vertex-

Vertex meshes, where every group of vertices represents a face. The other representation

scheme, also known as Face-Vertex meshes, uses two lists, an indexed list of vertices that

holds their coordinates and a list of vertex indices. Every group of vertex indices represents a

face. The Face-Vertex representation scheme is also used by the X3D to describe polygon

meshes. More precisely, the IndexedFaceSet node is of that type. Figure 7 describes these

two representation schemes.

Figure 6:

(a): A manifold mesh forming a closed fan.

(b): A manifold forming an open fan.

(c): A non-manifold where two faces share a single vertex and no edge.

Part of the images was taken from:

https://www.cs.mtu.edu/~shene/COURSES/cs3621/SLIDES/Mesh.pdf

22

2.3 – X3D’s IndexedFaceSet Node

 As described in [WX3D], X3D essentially is an XML document, meaning that every

entity that composes a 3D world and its interaction is described in a hierarchy of nodes in a

parent-child relationship. Among the nodes that can represent 3D objects, the

IndexedFaceSet node is used to represent 3D objects in a Face-Vertex manner that was

previously described.

 This node, as in [X3DIFS] extends the X3DComposedGeometryNode and uses groups of

vertex indices separated by “-1” in order to form the faces. These indices are 32 bit integers

that are defined in the node’s coordIndex attribute field. To define the vertices, this node uses

the Coordinate node as its child node. The Coordinate node as in [X3DCoo] extends the

X3DCoordinateNode and uses its point attribute field to define 3D coordinates.

Figure 7 : (a) is a Vertex-Vertex mesh, (b) is a Face-Vertex mesh.

Imagery taken and mixed from:
http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/meshes/polygon_meshes.html

23

2.4 – More sophisticated mesh data structures

 Even thought the Vertex-Vertex and Face-Vertex meshes have simple and

straightforward way to represent 3D models, there are some cases where we need to

answer questions about the connectivity of a mesh. These questions are related with the

adjacency and incidence of the vertices, edges and faces of the mesh. For example, which

faces are incident to a given vertex or which faces are incident to a given face or which

edges are adjacent. This kind of queries can be answered using the Vertex-Vertex and Face-

Vertex representation schemes, but because no such explicit information is held about the

connectivity, we have to traverse the whole geometry data many times for every query.

Additionally, we need to be able to make operations on the geometry and connectivity in

order to add or remove vertices and faces of the mesh. The operations of vertex and face

removal are important to mesh simplification algorithms that can reduce the fidelity of a 3D

model. These two reasons led to the creation of other data structures in order to solve that

problem, but with the cost of more memory usage.

 There are quite a few mesh data structure that solve that problem, the most used

one though is the half-edge, which is an extension of the winged-edge data structure but

they both work only on oriented and manifold meshes. The main idea of these two data

structures is that for every vertex of the mesh, we hold references or pointers to the other

elements of the mesh.

Figure 8: A code example of the IndexedFaceSet node

24

2.4.1 – Winged Edge data structure

 Baumgart in [Bau75] presents the winged-edge data structure. In his work, a

polyhedron consists of four types of nodes. These are the bodies, faces, edges and vertices.

The body node is a head of a ring of faces, a ring of edges and a ring of vertices. A ring is a

doubly linked circular list with a head node.

 In this data structure, each face and vertex point to one edge. Each edge points to

two faces and two vertices. Finally each edge points to four edges, two in a clockwise

direction and two in a counter-clockwise direction. The last four pointers form a conceptual

wing and this why this data structure got that name. Figure 9 gives an illustration of the

winged-edge data structure.

Figure 9: Winged Edge overview

25

While standing on the CE and while looking up, we can define the following pointers:

• NFACE: The next face.

• PFACE: The previous face.

• NCCW: The next edge in a counter-clock wise order.

• NCW: The next edge in a clockwise order.

• PCW: The previous edge in a clockwise order.

• PCCW: The previous edge in a counter-clock wise order.

• PVT: The previous vertex.

• NVT: The next vertex.

A sample code implementing the data structure in the C language could be the following:

struct Edge

{

 Edge *nccw, *pcw, *ncw, *pccw;

26

 Face *nface, *pface;

 Vertex *pvt, *nvt;

 // Other edge data

};

struct Face

{

 Edge *edge;

 // Other face data

};

struct Vertex

{

 Edge *edge;

 // Other vertex data

};

 As mentioned above, in order to implement a continuous LOD technique

on our input mesh, we must be able to make operations on the mesh such as

face, edge and vertex insertion and removal. Baumgart in his work besides

describing the data structure, also gives us two reference procedures that we can

Figure 10: The effects of applying the MKFE and KLFE procedures

27

use. The MKFE procedure, or “Make Face-Edge”, adds a pair of a face and

vertex into the surface topology. The KLFE, or “Kill Face-Edge” procedure

removes a face-vertex pair. Figure 10 [Bau75] gives an illustration of the effects

of applying these two procedures. Below that illustration, the refined pseudo-

code for the two procedures is given.

INTEGER PROCEDURE MAKE_FACE_EDGE (INTEGER V1,V2,FACE);

BEGIN “MAKE_FACE_EDGE”

 // CREATE NEW FACE & EDGE
 FNEW ← MAKE_FACE(FACE);
 ENEW ← MAKE_EDGE(PREVIOUS_EDGE(FACE));

 // LINK NEW EDGES TO ITS FACES & VERTICES
 PREVIOUS_EDGE(F) ← PREVIOUS_EDGE(FNEW) ← FNEW;
 PREVIOUS_FACE(ENEW) ← F;
 NEXT_FACE(ENEW) ← FNEW;
 PREVIOUS_VERTEX(ENEW) ← V1;
 NEXT_VERTEX(ENEW) ← V2;

 // GET THE WINGS OF THE NEW EDGE
 E2 ← PREVIOUS_EDGE(V1);
 DO
 E2 ← NEXT_EDGE_CW((E1 ← E2), V1)
 UNTIL
 NEXT_FACE_CW(E1, V1) = FACE;
 E4 ← PREVIOUS_EDGE(V1);
 DO
 E4 ← NEXT_EDGE_CW((E3 ← E4), V2)
 UNTIL
 NEXT_FACE_CW(E3, V2) = FACE;

 // SCAN CCW FROM V1 REPLACING FACE WITH FNEW;
 E ← E2;

28

INTEGER PROCEDURE KILL_FACE_EDGE (INTEGER ENEW);

BEGIN “KILL_FACE_EDGE”

 // PICKUP ALL THE LINKS OF ENEW
 FACE ← PREVIOUS_FACE(ENEW);
 FNEW ← NFACE(ENEW);
 V1 ← PREVIOUS_VERTEX(ENEW);
 V2 ← NEXT_VERTEX(ENEW);
 E1 ← PREVIOUS_EDGE_CW(ENEW);
 E2 ← NEXT_EDGE_CCW(ENEW);
 E3 ← NEXT_EDGE_CW(ENEW);
 E4 ← PREVIOUS_EDGE_CCW(ENEW);

 // GET ENEW LINKS OUT OF FACE, V1, V2
 IF PREVIOUS_EDGE(V1) = ENEW THEN
 PREVIOUS_EDGE(V1) ← E1;
 IF PREVIOUS_EDGE(V2) = ENEW THEN
 PREVIOUS_EDGE(V2) ← E3;
 IF PREVIOUS_EDGE(FACE) = ENEW THEN
 PREVIOUS_EDGE(FACE) ← E3;

 // GET RID OF FNEW APPEARANCES
 E ← E2;
 DO
 IF PREVIOUS_FACE(E) = FNEW THEN
 PREVIOUS_FACE(E) ← FACE;
 ELSE
 NEXT_FACE(E) ← FACE;
 UNTIL
 E4 = (E ← NEXT_EDGE_CCW(E, FNEW));

29

2.4.2 – Half Edge data structure

 The Half-Edge is probably the most widely used data structure when it comes to

computational geometry. As stated in [Zcg12] and we agree with that, the origin of the

current form of the Half-Edge is hard to find. Nevertheless, in order to find out if two convex

polyhedra intersect each other, Muller and Preparata in [MP78] presented the Doubly

Connected Edge List as the base data structure of their algorithm, which its logic is identical.

 In the Half-Edge data structure, every edge is split into two parts, the two halves of

the edge, that have opposite directions. Those two parts are called half-edges, hence the

name of the data structure. This data structure does not explicitly describe any edges,

instead the edges are implied by their two half-edges.

 Every half-edge points to its opposite twin half-edge. Additionally, every half-edge

stores a target vertex but no origin vertex, as opposed to the edge that has one start and one

end vertex. Given that the mesh is oriented and that twin half-edges look at opposite

directions, if we want to get the origin vertex of a half-edge we need to get the target vertex

of its twin. Also and given that the Half-Edge data structure is oriented counter-clock wise,

the left half-edge always touches a face and the right always touches its twin. Below there is

a sample code in C implementing the Half-edge data structure. Figure 11 gives an illustration

of the data structure. The blue arrow, denoted by h is one of the edge’s half-edge and the

arrow on its right is its twin.

struct HalfEdge
{
 HalfEdge* heTwin; // The twin half-edge
 HalfEdge* heNext; // The next half-edge
 HalfEdge* hePrevious; // The previous half-edge, this is optional
 Vertex* vTarget; // The target vertex
 Face* face; // The bordering face

 // Other data
}

struct Vertex
{

30

Figure 11: Half-edge overview [Zcg12]

31

The following enumerated list gives a summary of what the elements of a mesh
point to. Figure 12 gives an illustration of this list.

1. Every vertex points to the one outgoing half-edge.

2. Every face points to one arbitrary half-edge that is inside its boundary. A face can be

surrounded by many half-edges. In the case of a triangular mesh, a face is

surrounded by three half-edges.

3. Every half-edge points to its target vertex.

4. Every half-edge points to its touching face.

5. Every half-edge points to its next half-edge.

6. Every half-edge point to its opposite – twin half-edge.

7. Optionally, every half-edge points to its previous half-edge.

32

The code below is an example of how to find adjacent edges for a given face. The idea is to

race through all the half-edges pointed by the heNext pointer of the previous half-edge until

we meet the half-edge from which we started.

Figure 12: Illustrated Half-Edge enumerated list of references [BSBK02]

HalfEdge* heStart = face→he;
HalfEdge* heRunner = heStart;

do
{

 heRunner = heRunner→heNext;

} while (heRunner != heStart);

33

2.4.3 – Lath based data structures

 Assuming that the geometry can be expressed by vertices, Kenneth I. Joy et al. in

[JLM03] present the lath data type. Each lath element can be connected to another lath

element and that body of connections express the topology of the mesh. A single lath can be

identified by using a record of a vertex, an edge and a face. Also, each of the face-edge,

face-vertex, edge-vertex pairs can be associated with a single lath element. Figure 13 gives

an illustration of a half-edge mesh representation implemented with the lath data type.

 As we can see, a lath element L holds a reference to a single vertex. The

“companion” field points to the lath Lcomp . The Lcomp lays on the same edge as L and

references the opposite vertex of the edge. Thus an edge can be described as a pair of laths

that have this “companion” relationship. The “vertex_clockwise” field points to the next lath in

a clockwise vertex traversal. Figure 14 shows that the lath’s contiguous structure forms two

kinds of loops, one in a clockwise direction around a vertex and one in a counter-clockwise

direction inside a face.

Figure 13 [JLM03]

34

The traversal of the mesh elements can be done by using the following operations:

Figure 14 [JLM03] The laths form two kinds of loops, a clockwise around a vertex
and a counter-clockwise inside a face.

35

• ec(L): return the L’s edge companion.

• cv(L): return the lath that follows L that is defined in the L’s “vertex_clockwise” field.

• ccf(L): return the lath that follows L in a counter-clockwise traversal of the face that L

represents.

• cf(L): return the lath that follows L in clockwise traversal of the face.

• ccv(L): return the lath that follows L in counter-clockwise traversal around the L’s

vertex.

2.5 – Level of Detail

 The Level Of Detail in applications that use 3D models, such as computer games, is

a technique for representing a 3D model in different levels of fidelity. What this means for the

geometry of a model is that we can reduce or increase the number of vertices. This can be

useful in cases where the available processing power for rendering the model with a given

geometry complexity is insufficient or when the model is placed away from the camera. For

example, a dodecahedron when viewed from a far distance can be perceived by the human

eye as a sphere. For that reason rendering the full geometry of the model would be a waste

of computational resources.

 The size of 3D models is increasing day by day. Thus they need more memory for

storage, as well as more computing power to be rendered. Although the computing and

storage capabilities, even in home computing, become noticeably better year by year, the

Internet’s average speed does not keep up with the same pace. This becomes a problem

when 3D models that are above the medium size, need to be transmitted as a Web3D’s

scene assets. In that case and in order the model to be viewed, the user will have to wait for

an undesirably long time until the model is fully loaded.

 Nah in [NF03] suggests that the average website user is willing to wait for at most

two seconds until the web content is loaded. As in [Rail16] is suggested that interactive

content has to be delivered in under one second. To achieve this, we can send to the user a

coarse version of our model and then gradually refine it. This approach has the advantage of

keeping the user occupied while the full model is loaded, resulting in that way to a better user

experience.

 Also and given that the LODs are created by simplifying the input mesh, we need a

way to determine if the simplified output is visually pleasant. As mentioned above, there are

two ways to simplify a mesh. Either by hand or programmatically. In the first case, we have

36

the opportunity to evaluate the simplified output ourselves but this is not always the case

when taking the second approach.

 As in Garland’s work [Ga99], we need a way to estimate how much similar the input

and output meshes are. One approach is to render the two meshes and then calculate the

differences of the their produced images. This approach has the advantages of measuring

directly the perceptible similarity of the meshes and that not visible details can be discarded.

On the other hand we have to render the meshes from all the possible viewpoints. Another

approach although is to measure the similarity on the geometry level.

 Kapetanakis in [KK14] extends the MPEG-DASH standard in order to support

adaptive 3D models. In general, every asset of the scene is described as an Adaptation Set.

If the asset is separated into different LODs, such as 3D models, these LODs are described

as Representations. The code below is taken as a part from [ML16] and gives an example of

a model and its LODs described in an MPEG-DASH manifesto.

<MPD>

 <BaseURL>http://mclab1.medialab.teicrete.gr:8081</BaseURL>
 <BaseURL>http://localhost:8081</BaseURL>
 <BaseURL>http://alternativeHost:8081</BaseURL>
 <BaseURL>http://alternativeHost2:8081</BaseURL>
 <BaseURL>http://alternativeHost3:8081</BaseURL>
 <BaseURL>http://alternativeHost4:8081</BaseURL>

 <Period id="3d_model">

 <AdaptationSet mimeType="model/x3d+xml" codecs="none" minFrameRate="10">

 <Representation id="6" bandwidth="300000" qualityRanking="4">
 <BaseURL>cat3.x3d</BaseURL>
 </Representation>

 <Representation id="7" bandwidth="500000" qualityRanking="3">

http://alternativehost4:8081/

37

2.5.1 – Discrete LOD Framework

 In the DLOD framework for every input model, a sequence of gradually coarser and

look alike models is created. These output models are individual entities, meaning that the

geometry and topology might be similar but they are disjoint. This simplification process is

done before runtime. There are mesh simplification algorithms and tools that give an

automatically generated hierarchy of LODs, although sometimes this process is preferred to

be made by a human to give a fine tuned result. The video in [Utube16] shows an example of

a handmade mesh simplification process. Some tools that can be used to automatically

generate LODs can found in [ADM16] and [BDM16].

 The X3D standard offers the LOD node that enables us to manage a hierarchy of LOD

models in camera-to-object distance manner. Every LOD model is included as a child node

of the LOD node. The selection of which LOD model will be rendered for the current object-to-

camera distance is determined by the range attribute. Bellow we can find the node’s

description as defined in [WX3dL]. A live example along with its source code can be found in

[XfwaL].

LOD : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
 SFVec3f [] center 0 0 0 (-∞,∞)
 MFFloat [] range [] [0,∞) or -1
}

38

 The DLOD framework is widely used in 3D games because it is very easy to

implement. All we need to do is to create a hierarchy of LOD models and then render the

most appropriate one. Another advantage is that because the mesh simplification takes place

in an offline preprocess, the runtime is free of any mesh simplification algorithms. Thus the

cost of processing power for this framework is low.

 On the other hand and because these LOD models are individual entities, when

transmitting them there will be redundant data in between the LODs. That is because even

though the geometry might be similar there is no obvious way to leverage the in between

similarities to make a cumulative transmission. This is solved by using the continuous LOD

framework, as we will later discuss, because it allows a progressive transmission which

unfortunately comes with a complex implementation and higher processing power

requirements.

2.5.2 – Level of detail transitions

 When using the DLOD framework, the switching between the LODs is abrupt and

easily perceptible by the viewer, giving the sense that the 3D object “pops” when the camera

is moving near or away from it. This visual artifact is called the popping effect. In order to

eliminate it or at least reduce it, we must give a smooth transition between the start and

target LOD models. For that reason, the geomorphing and alpha blending techniques are

used and applied on the mesh level and image level respectively.

 In particular in the alpha blending technique, we draw the two LOD models

simultaneously one on top of the other and interpolate the transparency values in a short

period of time. The main disadvantage of alpha blending is that we need to render the two

models at the same time, increasing that way the displayed geometry. This becomes even a

bigger problem when we want to switch to a coarser version in order to free up some

computing resources. Nevertheless, Scherzer and Wimmer in [SW08] represent an algorithm

that renders the two LODs in subsequent frames and in that way we avoid to simultaneously

render those two. Figure 15 gives an illustration of the alpha blending transition approach.

39

 Another approach of giving a smooth LOD transition is by using morphing or

geomorphing. In general, in the morphing technique, the shape of an object gradually

changes from a starting form to another by interpolating between the two input geometries.

Figure 17 gives an example of mesh morphing. The problem with this kind of interpolation, is

that we need to have a one-to-one vertex correspondence and for that reason the two

interpolating models must have the same number of vertices.

 To overcome this limitation, Lee et al. in [LDSS99] present a method of morphing

between multiresolution meshes. As an overview, they reduce the geometry of both input

meshes in order to build the two bijective source-to-target and target-to-source mappings.

These mappings are then realized to as what they call the metamesh, which is the merged

version of the two input meshes. By their estimations although, the size of the metamesh can

reach up to 10 times the size of the larger mesh. This makes it inappropriate for our

problem’s solution. The Figure 16 is an excerpt of their work that shows the metamesh’s size

for four different mesh morphings.

Figure 15 An example of a alpha-blending transition. Taken from [SW08]

40

 The methodology’s main idea that is used in [LDSS99] can also be found in many

other approaches in this research area. In Parus’ work [Par05] we can find a general

description of the steps that we have to follow. First, for every vertex in the source mesh we

need to find a corresponding vertex on the target mesh. Note that because the two meshes

might not have the same number of vertices, some of the source’s vertices will be mapped to

a point somewhere near the area covered by the target mesh. The next step is the same as

the previous one but in the opposite direction. Then the supermesh is constructed by

merging the two input mesh’s topologies. Finally, by using the supermesh we can

bidirectionally interpolate between the meshes. For that reason and at least intuitively, the

size overhead is not appropriate for our needs. Nevertheless, the research in this area is still

active and we do not exclude the chance of a solution approach based on mesh morphing.

Figure 16: Metamesh’s size [LDSS99]

Figure 17: Example of mesh morphing [LDSS99]

41

2.5.3 – Continuous LOD Framework

 In the CLOD framework, the model is encoded in a form that it allows us to extract

the desired LOD from a “continuous spectrum” of LODs. Hoppe in [Hp96] introduces the

progressive mesh representation. In the PM form, an input polygon mesh M is stored as a

coarse mesh M0, along with a series of n refinement records. Thus the sequence M0, M1, … ,

Mn describes a continuous spectrum of LODs, with Mn as the original input mesh. For that

reason, the PM representation scheme can support progressive transmission by first sending

the base mesh M0 and later the refinement records.

 Hoppe in his work expresses a mesh as a tuple M = (K, V, D, S). Where K and V

describe the connectivity and vertex positions. D and S describe the discrete and scalar

attributes respectively. The attributes D and S are indicative of visual discontinuities in the

mesh’s appearance, Figure 19 illustrates that case.

Figure 18: Source to target vertices correspondence (green arrows) and target to
source mesh vertices correspondence (red arrow) [Par05]

42

 In order to produce the base mesh M0 a mesh optimization algorithm iterates the

input mesh and at each step an edge is removed. This edge removal transformation

𝑒𝑐𝑜𝑙(𝑣𝑠, 𝑣𝑡)called as edge collapse, removes the edge by collapsing 𝑣𝑡onto 𝑣𝑠. Figure 20

gives an illustration of the edge collapse transformation and as you can see the incident

faces to the edge(𝑣𝑠, 𝑣𝑡)are removed as well. In addition, the edge collapse transformation is

invertible. The inverse transformation 𝑣𝑠𝑝𝑙𝑖𝑡(𝑠, 𝑙, 𝑟, 𝑡𝐴)called as vertex split adds a new vertex

at the position t and two new faces {𝑣𝑠, 𝑣𝑡, 𝑣𝑙}and {𝑣𝑡, 𝑣𝑠, 𝑣𝑟}.

 Also, the sequence of edge collapses determines the quality of intermediate LODs.

This depends on the mesh simplification algorithm. For example, an easy to implement mesh

simplification algorithm, is to remove a random edge at each step, but most likely the result’s

visual quality will be very low. Although and because this mesh simplification algorithm is

executed before the run time, Hoppe in his work takes the approach of investing some time

in order to meet a better visual quality.

 In a nutshell, there are three steps that we have to follow in order to create a

progressive mesh. First, the mesh simplification algorithm iterates the input mesh and

produces a sequence of edge collapse records. Then the vertex split records are created in

the reverse order of the edge collapse’s records sequence. Finally, we write to a file the base

mesh 𝑀0along with the vertex split records. Now we can transmit the 𝑀0and later transmit

the vertex split records one by one in order to progressively refine the mesh until we reach its

Figure 19: The visual discontinuities are marked as yellow lines [Hp96]

Figure 20 edge collapse and vertex split transformations [Hp96]

43

original form. Furthermore, at each refinement step we can apply geomorphing to avoid the

popping effect.

 A technique based on a vertex by vertex refinement scheme offers fine granularity

but it has the disadvantage of imposing a big overhead. Pajarola and Rossignac in [PR00]

propose an alternative approach to Hoppe’s PM representation. In their work, they group the

edge collapses into batches. This results into a batch based mesh refinement scheme

instead of sending the refinement records one by one. Their approach achieves better

compression but compromises with a coarser granularity.

 Figure 21 illustrates a comparison between single rate transmission and progressive

transformation approaches. 𝑎expresses the time needed to send the coarse version of the

model. The dashed line curve illustrates the case where after 𝑎we send the original model.

Note that even though it results in a poor user experience, the overall loading time is the

shortest. Approaches based on PM are illustrated by the grey curve, we can see that they

offer a fine granularity but in the expense of a long loading time. Finally the batch based

approach is illustrated by the staircase curve which makes a compromise between

granularity and loading time.

 Limber et al. in [LJBA13] introduce the POP buffer method. The model’s coordinates

are mapped to a cluster of nested grids of integer coordinates with different quantization

levels. Then by using a truncation function they can increase of decrease the grid’s

resolution. If the two points of an edge are mapped to the same grid point, then the edge is

degenerate. Figure 22 illustrates the cell merge and cell split operations. The triangles

marked in red will become degenerate on the grid with smaller resolution. Finally, the

triangles are sorted in the reversed order in which they degenerated. They call this reordered

sequence of triangles as the Progressively Ordered Primitive buffer. That way the

progressive transmission in this method is straightforward, all we need to do is to push to the

back the incoming vertices and triangles.

 Melax in [Sm98] gives a simple, yet quite effective polygon reduction algorithm. In

fact, we slightly modified a ported version of his implementation to Javascript [Gzz85] and

used it as our CLOD framework on the server side. In his work, the algorithm iterates the

mesh and applies an edge collapse operation until the desired number of vertices is

removed. The vertex pairs that will be collapsed are selected by calculating the edge’s length

multiplied by a curvature term. The information of edge collapses is kept and the vertices are

sorted by the collapsing order and we can use this sequence of collapses to achieve

progressive transmission.

44

2.6 – Delta Compression

 Delta compression or delta encoding is a technique for encoding files in the form of

differences. Given the previous and current version of a resource, we can create a patch file

that describes how to change the previous version in order to reconstruct the current. Suel

and Memon in [SM02] give a more formal definition. Consider two files 𝑓𝑛𝑒𝑤 , 𝑓𝑜𝑙𝑑 ∈ 𝛴, where

𝛴is an alphabet, the client 𝐶and the server 𝑆and the case where 𝐶has a copy of 𝑓𝑜𝑙𝑑and

𝑆has both 𝑓𝑜𝑙𝑑and𝑓𝑛𝑒𝑤. We need to compute a delta file 𝑓𝛿such that 𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝛿) <

𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑛𝑒𝑤)by which 𝐶can fully reconstruct the 𝑓𝑛𝑒𝑤. From their work, some of the cases

where delta compression is applied are:

Figure 21 [PR00]

Figure 22: [LJBA13] cell merge and cell split operations

45

• Software Revision Control Systems, where objects are stored in a way that allows

the user to retrieve older versions.

• File system delta compression, where delta compression is applied on the file system

level.

• Software distribution, where software updates are transmitted in the form of patches.

• Visualize differences between two files.

• Improving HTTP performance by exploiting the similarities between web resources or

different versions of the same resource.

 An example of using delta compression in software distribution can be found in

[SC12]. This work deals with the distribution of app updates in the Android Market where for

each update the full updated version of the app is downloaded. Instead of that, they propose

the use delta compression and they achieve an average compression of nearly 50%.

 The Git SCM initially saves the objects in its repository in a “loose” object format and

compresses them using zlib, a non delta encoding compression library. After that, Git packs

the objects into a binary file called “packfile”, where delta encoding is used [PGit]. Other

SCMs such as Mercurial and Subversion [Mer16] [Sv16] follow different approaches of how

and when to use delta encoding but the goal is the same. As for the visualization of

differences between edits, Figure 23 is a screenshot of our implementation’s git repository

that gives such an example.

 Although text based collaborative and version control systems such as SCMs are

fairly mature, in the field of CAD and 3D modeling the development of such systems with

capabilities of the same quality level did not catch up. Nevertheless, Doboš in [Do15]

introduces the 3D Repo, a cloud based version control and collaboration framework for 3D

assets that uses a NoSQL database for data storage and retrieval. Again, for reducing

storage requirements it uses delta compression.

 Gumhold et al. in [GGS99] deal with mesh compression. First they quantize the

vertices’ coordinates by splitting each coordinate into four packages of four bits. Then, to

achieve even better compression they use delta encoding on the vertex coordinates. Hoppe

in [Hp96] mentions that the vertex split is a local operation and for that reason it results to a

coherent output where we could use delta encoding. For example, when splitting the vertex

𝑣𝑆𝑖
𝑖 into the two new vertices, we can predict their positions and then use delta encoding to

reduce the required storage space. Also, Limper et al. in [LWSJS13] mention that we should

exploit the browser’s existing compression capabilities by using delta encoding along with

GZIP compression.

 Gasparello et al. in [GMBTB11] deal with compression schemes of real-time

streaming of OpenGL command sequences. As an overview, the command streaming

46

system consists of a master computer that sends OpenGL commands to a pool of slave

computers to be rendered on its behalf. The master computer runs a custom device driver

that can intercept any OpenGL call and creates a ghost command code. That way the slave

computers can replicate the OpenGL calls. Every intercepted OpenGL call is passed through

a packetizer module that encodes and stores them into a command buffer. Next, the delta

between the current and previous command buffers is produced and then is compressed

with a general purpose compressor. Finally the compressed delta is sent through the

network. Figure 24 gives an illustration of the communication of the master and slave

computers.

Figure 23: Git GUI - Visualization of edits of a file

47

Figure 24: OpenGL commands transmission from master to slave computer
[GMBTB11]

48

 Mogul et al. in [MDFK97] try to quantify the potential benefits of delta encoded HTTP

responses. In their work they sampled HTTP requests whose URL does not include -

practically- any multimedia or binary file extensions. They produced the deltas by using the

UNIX command diff -e , the compressed output of diff -e and vdelta. Also they mention from

previous work that responses with the same URL prefix are similar, thus making delta

encoding effective. In their sampled traces, a fairly big part included URLs containing the “?”

character, which suggests a query operation, so we expect effective delta encoding because

of same URL prefix. Their results show that the size and delay of HTTP responses is

improved when using delta encoding along with data compression. However, using delta

encoding is viable only when the imposed overhead is smaller than the potential benefits.

 The main goals of the [RFC3229] proposed standard are to reduce the size of HTTP

responses, be interoperable with HTTP/1.0 and HTTP/1.1 and optional for the clients and

servers. In order to work, it adds optional message headers. The accept instance

manipulation “A-IM” header for the client and the instance manipulations “IM” header for the

server. These headers describe which encoding format they are willing to use and which

were finally used respectively. Also it proposes that delta encoded responses should be

identified with the 226 unassigned code. Figure 25 gives an illustration of the conceptual

sequence of transformations that are applied. Figure 26 gives an example of a client

requesting the resource /foo.html of which it has a cached instance with entity tag “123xyz”

and is wiling to accept compressed responses whether or not they are delta encoded.

 In RFC 3229 the delta encoded responses only work when they come from the same

URL, making it that way unsuitable for URLs with varying querying parameters. The SDCH

proposed protocol [BLM16] overcomes this limitation by using a dictionary file that is shared

between the client and the server and contains strings that have high chances of appearing

in subsequent HTTP responses. The client can retrieve the current dictionary “out of band”

and future HTTP responses will include only references to strings in the dictionary, reducing

that way the payload size. This compression scheme is referred to as the SDCH encoding

and is VCDIFF based.

49

Figure 25: Transformations diagram [RFC3229]

50

Figure 26: Request example [RFC3229]

51

Chapter – 3

3.1 – Implementation

 In this work, we propose that the LODs should be delta encoded in order to minimize

the redundant data and achieve lower payload. On the client side we have the browser which

runs the X3DOM as the X3D player. Also, we implemented a simplistic MPEG-DASH

adaptation mechanism which is responsible for choosing the appropriate LOD that is

available from the given MPD file. This adaptation mechanism is also responsible for sending

the appropriate HTTP request to the server and then apply the patch data when the

response is received. On the server side, we use the LOD Framework module which can

extract the desired LOD. When the LOD is extracted, the server computes the delta between

the extracted LOD and the client’s current LOD and finally responds with the patch data. The

overview of our implementation is illustrated on Figure 2. Also, on the same server we host

the web application that allows the user to define LODs along with their quality rankings and

then produce the MPD file. For the implementation of both the client and server side we used

the Javascript language.

3.1.1 – Server overview

 For our continuous LOD framework we used and modified a port of [Sm98] from C++

to Javascript [Gzz85] which is based on the Three.js WebGL framework. As for the delta

encoding implementation, we used the [plvc] in both the client and the server. For these

reasons we chose to implement the server by using the Javascript language and the Node.js

[Node] as the runtime environment. As for the web application framework we used the

Express framework [Expr]. The project’s properties and dependencies are defined in the

package.json file. To install the defined dependencies we called from the terminal the npm

install command and the npm [Npm] package manager installed the dependencies from its

remote registry. Figure 27 shows the server's package.json file.

 On the same server we also built and host our web application that allows the user to

define the LODs along with the quality rankings by using either the discrete or continuous

LOD framework. After when the quality ranking and LOD pairs are defined, the server

produces the appropriate MPD. As a final step of the web application, we display to the user

52

the directions of how to use our MPEG-DASH player. Figure 28 shows the first screen of the

web application.

Figure 27: The server's package.json file

53

3.1.2 – Discrete LOD framework UI

 In this screen the user is able to upload the LOD models from his or her filesystem

and define for each LOD the network bandwidth that it requires. After that, the screen which

contains the directions of how to add the adaptable model into the X3D scene is displayed.

Figure 29 shows the upload screen and Figure 30 shows the directions screen.

Figure 28: Web application's first screen

54

Figure 29: Discrete LOD framework upload screen

55

Figure 30: Directions screen

56

3.1.3 – Continuous LOD framework UI

 First, we show to the user a menu in which he or she can select a model from a

preset list or upload a new one from the filesystem. Then the screen for defining the desired

LODs is presented. The selection of the desired LOD is done by moving the slider in the

bottom. For each desired LOD the user presses the Add range button. When done, the user

presses the Send ranges button. Figure 31 shows model selection screen and Figure 32

shows the LOD editor screen.

Figure 31: Model selection screen

57

Figure 32: LOD editor

58

3.1.4 – Client with MPEG-DASH enabled X3D scene

 For the needs of demonstration, we implemented a simplistic MPEG-DASH player.

Because the implementation of content adaptation mechanisms is not an easy task and fall

out of the scope of this work, the selection of the LOD is made in an ascending and

descending order of the MPD’s available quality rankings in arbitrary time intervals. The X3D

scene author needs to include along with our player, the jQuery [jQ] library and the vcdiff

Javascript implementation [plvc]. Then, the author must add the references of the adaptive

models of the scene to the player by using the DEF attribute. These steps are described in

more detail in the instructions page, an example of which is presented in Figure 30. The

code that changes the LOD of the model is shown in Figure 33. Figure 34 shows the code

that constructs the HTTP request by including the current and the requesting LOD, then

when the response is received it applies the patch data. Figure 35 shows an example of a

scene where two adaptive models are included. Finally, Figures 36 and 37 are screenshots

that were taken from the client’s runtime.

59

Figure 33: Code that observes and selects the next LOD

60

Figure 34: Code that requests and applies the LODs

61

Figure 35: Example of using the player

62

Figure 36: Client during runtime showing two low LOD models

63

3.1.5 – Results in numbers

Figure 37: Client during runtime showing two high LOD models

64

 Here we are going to present how many bytes were needed to be transmited for

each LOD. For the DLOD framework we used five of the most widely used 3D models for

testing. More specifically the Bunny, Suzanne, Happy Buddha, Dragon and the Armadillo

models which they were converted into the *.x3d file format. We produced a hierarchy of six

LODs for each model by using the Blender’s decimation tool. The CLOD was tested with the

Suzzane model. Each LOD, for all the models, includes the 30%, 40%, 60%, 70%, 90% and

100% of the model’s faces. Each LOD was delta encoded using the previous LOD as its

source.

Table 1: Results table of the Bunny model using the DLOD framework

Figure 38: Graph of the Bunny’s transmitted bytes using the DLOD framework

0 20 40 60 80 100 120

0

500000

1000000

1500000

2000000

2500000

3000000

Faces %

B
y
te

s

Raw data bytes

Delta encoded bytes

Table 2: Results table of the Suzanne model using the DLOD framework

65

Figure 39: Graph of the Suzanne’s transmitted bytes using the DLOD framework

0 20 40 60 80 100 120

0

5000

10000

15000

20000

25000

30000

Faces %

B
y
te

s

Raw data bytes

Delta encoded bytes

Table 3: Results table of the Happy Buddha’s model using the DLOD framework

66

Figure 40: Graph of the Happy Buddha’s transmitted bytes using the DLOD
framework

0 20 40 60 80 100 120

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

Faces %

B
y
te

s

Raw data bytes

Delta encoded bytes

Table 4: Results table of the Dragon’s model using the DLOD framework

67

Figure 41: Graph of the Dragon’s transmitted bytes using the DLOD framework

0 20 40 60 80 100 120

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

Faces %

B
y
te

s

Raw data bytes

Delta encoded bytes

Table 5: Results table of the Armadillo’s model using the DLOD framework

68

Table 6: Average savings of all the tested models using the DLOD framework

Figure 42: Graph of the Armadillo’s transmitted bytes using the DLOD framework

0 20 40 60 80 100 120

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

Faces %

B
y
te

s

Raw data bytes

Delta encoded bytes

69

Figure 43: Graph of average savings of all the tested models using the DLOD
framework

0 20 40 60 80 100 120

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

Average saving per faces range

70

Figure 44: Results table of the Suzanne's model using the CLOD framework

Figure 45: Graph of the Suzanne's transmitted bytes using the CLOD framework

0 20 40 60 80 100 120

0

20000

40000

60000

80000

100000

120000

140000

160000

Faces %

B
y
te

s

Raw data bytes

Delta encoded bytes

71

3.2– Summary, conclusions and future work

 In this work we focused on the transmission of LODs using the discrete and

continuous LOD frameworks. In the first framework each LOD is represented as an individual

3D model. This means that the geometry is disjoint and we don’t have a straightforward

method for a redundancy free transmission. On the other hand we have the continuous LOD

framework in which a 3D model is encoded in a way that it allows us to extract the desired

LOD on demand. On the down side, there is no standard encoding scheme that is used

among all implementations. To alleviate these issues we propose the use of delta encoding.

 Among its many applications, delta encoding is also used in the RFC 3229 and the

SDCH protocols in order to minimize the payload size of HTTP responses. The work of

[GMBTB11] deals with the size reduction of OpenGL command batches that are streamed

through the network. They use data compression along with delta encoding which they call

as in-frame and inter-frame compression respectively. We believe, at least in a more abstract

level, that their work is close to our solution approach even though they are dealing with a

different kind of problem.

 On the server side we created a module that can extract the desired LOD which is

then converted into a form compatible with the X3D’s IndexedFaceSet node and the patch data

are produced by using the client’s current LOD. Then the client produces the target LOD by

applying the patch and updates the scene’s model by using the jQuery’s .attr() [jQattr]

method for the point and coordIndex attributes. The given API for the MPEG-DASH client

developer is fairly simple. To change the current LOD, he or she will just call the model’s

changeLOD method which takes two arguments. The first one is the requesting quality ranking

and the second one is an observer object which is notified if the LOD update was successful

or if it failed.

 Delta encoding performs well when the differences between the input files are small,

which we can confirm that by our results. As we can see, the high compression ratios can be

found when we were changing the LOD from the 30% to 40%, from 60% to 70% and from

90% to 100% of the model’s faces. Finally, we got the best compression ratios when using

the CLOD framework. This is because the data in this framework are homogeneous.

 Based on this observation, a possible future research would deal with the

development of a mesh simplification algorithm that produces a delta encoding friendly

output. Additionally, we would like to fully investigate the potentials of the SDCH protocol on

the transmission of LODs.

72

References

[WHV14]: WHATWG: Ian Hickson, Google, Inc. W3C: Robin Berjon, W3C,
Steve Faulkner, The Paciello Group, Travis Leithead, Microsoft Corporation,
Erika Doyle Navara, Microsoft Corporation, Edward O'Connor, Apple Inc. Silvia
Pfeiffer, HTML5 A vocabulary and associated APIs for HTML and XHTML, 2014,
https://www.w3.org/TR/html5/Overview.html

[IRS11]: I. Sodagar, "The MPEG-DASH Standard for Multimedia Streaming
Over the Internet," in IEEE MultiMedia, vol. 18, no. 4, pp. 62-67, April 2011.
doi: 10.1109/MMUL.2011.71

[SAC11]: Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. 2011.
An experimental evaluation of rate-adaptation algorithms in adaptive streaming
over HTTP. In Proceedings of the second annual ACM conference on Multimedia
systems (MMSys '11). ACM, New York, NY, USA, 157-168.
doi=http://dx.doi.org/10.1145/1943552.1943574

[BEJZ09]: Johannes Behr, Peter Eschler, Yvonne Jung, and Michael Zöllner.
2009. X3DOM: a DOM-based HTML5/X3D integration model. In Proceedings of
the 14th International Conference on 3D Web Technology (Web3D '09), Stephen
N. Spencer (Ed.). ACM, New York, NY, USA, 127-135.
doi=http://dx.doi.org/10.1145/1559764.1559784

[KPMZ14]: K. Kapetanakis, S. Panagiotakis, A. G. Malamos and M.
Zampoglou, "Adaptive video streaming on top of Web3D: A bridging technology
between X3DOM and MPEG-DASH," 2014 International Conference on
Telecommunications and Multimedia (TEMU), Heraklion, 2014, pp. 226-231.
doi: 10.1109/TEMU.2014.6917765

[GIT14]: Kostas Kapetanakis, Github pull request #232, url:
https://github.com/x3dom/x3dom/pull/232/files

[ML14]: Multimedia Content Laboratory - X3DOM VR world with MPEG-
DASH videostream, url: http://medialab.teicrete.gr/minipages/dash3d/

[KK14]: Kostas Kapetanakis, WEB-3D REAL-TIME ADAPTATION
FRAMEWORK BASED ON MPEG-DASH, 2014, url:
http://medialab.teicrete.gr/media/thesis/Kapetanakis_thesis.pdf

[ZKSMP16]: M. Zampoglou, K. Kapetanakis, A. Stamoulias, A. G. Malamos, S.
Panagiotakis, “Adaptive streaming of complex Web 3D scenes based on the

https://github.com/x3dom/x3dom/pull/232/files
http://medialab.teicrete.gr/minipages/dash3d/
http://medialab.teicrete.gr/media/thesis/Kapetanakis_thesis.pdf

73

MPEG-DASH standard”, “Multimedia Tools and Applications”, Vol. 75, pp.1-24 ,
2016, doi: 10.1007/s11042-016-4255-8

[KPM13] Kapetanakis K, Panagiotakis S, Malamos AG (2013) Html5 and
websockets; challenges in network 3d collaboration. In: Proceedings of the 17th
Panhellenic Conference on Informatics, PCI ’13. ACM, New York, pp 33–38

[KPMZ 2014] K. Kapetanakis, S. Panagiotakis, A. G. Malamos, M. Zampoglou,
"Adaptive video streaming on top of Web3D: A bridging technology between
X3DOM and MPEG-DASH", Proc. IEEE Int. Conf. Telecommun. Multimedia
(TEMU), pp. 226-231, 2014.

[ZMK 2014] Markos Zampoglou, Athanasios G. Malamos, Kostas Kapetanakis,
Konstantinos Kontakis, Emmanuel Sardis, George Vafiadis, Vrettos Moulos and
Anastasios Doulamis. "iPromotion: A Cloud-Based Platform for Virtual Reality
Internet Advertising", Big Data and Internet of Things: A Roadmap for Smart
Environments, Studies in Computational Intelligence 546, DOI: 10.1007/978-3-
319-05029-4-19, Springer International Publishing Switzerland 2014

[JHC76]: James H. Clark. 1976. Hierarchical geometric models for visible
surface algorithms. Commun. ACM 19, 10 (October 1976), 547-554.
doi=http://dx.doi.org/10.1145/360349.360354

[X3DP16]: Web3D, Applications, Players and Plugins for X3D / VRML Viewing,
2016, url:
http://www.web3d.org/x3d/content/examples/X3dResources.html#Applications

[FRSV14]: Figueiredo, Mauro, José I. Rodrigues, Ivo Silvestre, and Cristina
Veiga-Pires. "A Topological Framework for Interactive Queries on 3D Models in
the Web." The Scientific World Journal 2014

[Par05]: Jindřich Parus, Morphing of Meshes, Technical Report DCSE/TR-
2005-02, 2005, url: http://hdl.handle.net/11025/21597

[Wc12]: Won Chun, WebGL Models: End-to-End, pp 431 – 453, “OpenGL
Insights”, July 2012, CRC Press, ISBN: 978-1439893760, url:
http://www.openglinsights.com

[MDFK97]: Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander
Krishnamurthy. 1997. Potential benefits of delta encoding and data compression
for HTTP. In Proceedings of the ACM SIGCOMM '97 conference on Applications,
technologies, architectures, and protocols for computer communication
(SIGCOMM '97), Martha Steenstrup (Ed.). ACM, New York, NY, USA, 181-194.
doi=http://dx.doi.org/10.1145/263105.263162

http://www.web3d.org/x3d/content/examples/X3dResources.html#Applications
http://www.openglinsights.com/

74

[Pks02]: Konstantinos Psounis. 2002. Class-Based Delta-Encoding: A
Scalable Scheme for Caching Dynamic Web Content. In Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCSW '02).
IEEE Computer Society, Washington, DC, USA, 799-805.

[Chr02]: Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean
Ahern, Peter D. Kirchner, and James T. Klosowski. 2002. Chromium: a stream-
processing framework for interactive rendering on clusters. In Proceedings of the
29th annual conference on Computer graphics and interactive techniques
(SIGGRAPH '02). ACM, New York, NY, USA, 693-702.
doi=http://dx.doi.org/10.1145/566570.566639

[WG01]: Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll,
Matthew Everett, and Pat Hanrahan. 2001. WireGL: a scalable graphics system
for clusters. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques (SIGGRAPH '01). ACM, New York, NY, USA, 129-140.
doi=http://dx.doi.org/10.1145/383259.383272

[GMBTB11]: P. S. Gasparello, G. Marino, F. Bannò, F. Tecchia and M.
Bergamasco, "Real-Time Network Streaming of Dynamic 3D Content with In-
frame and Inter-frame Compression," 2011 IEEE/ACM 15th International
Symposium on Distributed Simulation and Real Time Applications, Salford, 2011,
pp. 81-87.
doi: 10.1109/DS-RT.2011.24

[RMVC] G.A. Rovithakis, A.G. Malamos, T.A. Varvarigou and M.A.
Christodoulou, "Quality Assurance in Networks - a High Order Neural Net
Approach," 37th IEEE Conf. On Decision and Control CDC'98, Florida, Dec.
1998.

[RFC3229]: J. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann, Y. Goland, A.
van Hoff, D. Hellerstein, RFC 3229 - Delta encoding in HTTP, January 2002, url:
https://tools.ietf.org/html/rfc3229

[BLM16]: Jon Butler, Wei-Hsin Lee, Bryan McQuade, Kenneth Mixter, A
Proposal for Shared Dictionary Compression over HTTP, 2016

[Li15]: Shared Dictionary Compression for HTTP at LinkedIn, 2015,
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin

[WX3D]: What is X3D, 2016, http://www.web3d.org/x3d/what-x3d

http://dx.doi.org/10.1145/383259.383272
https://tools.ietf.org/html/rfc3229
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
http://www.web3d.org/x3d/what-x3d

75

[X3DIFS]: Extensible 3D (X3D) - Part 1: Architecture and base components -
Geometry3D component, 2016,
http://www.web3d.org/documents/specifications/19775-
1/V3.3/Part01/components/geometry3D.html#IndexedFaceSet

[X3DCoo]: Extensible 3D (X3D) - Part 1: Architecture and base components -
Rendering component, 2016,
http://www.web3d.org/documents/specifications/19775-
1/V3.3/Part01/components/rendering.html#Coordinate

[Bau75]: Bruce G. Baumgart. 1975. A polyhedron representation for
computer vision. In Proceedings of the May 19-22, 1975, national computer
conference and exposition (AFIPS '75). ACM, New York, NY, USA, 589-596.
doi=http://dx.doi.org/10.1145/1499949.1500071

[Zcg12]: Chapter 5 - Plane Graphs and the DCEL, Institute of Theoretical
Computer Science, ETH Zurich,
http://www.ti.inf.ethz.ch/ew/lehre/CG12/lecture/Chapter%205.pdf

[MP78]: D.E. Muller, F.P. Preparata, Finding the intersection of two convex
polyhedra, Theoretical Computer Science, Volume 7, Issue 2, 1978, Pages 217-
236, ISSN 0304-3975, http://dx.doi.org/10.1016/0304-3975(78)90051-8.
http://www.sciencedirect.com/science/article/pii/0304397578900518

[BSBK02]: M. Botsch S. Steinberg S. Bischoff L. Kobbelt, OpenMesh– a
generic and efficient polygon mesh data structure, 2002

[JLM03]: Joy KI, Legakis J, Maccracken R (2003) Data Structures for
Multiresolution Representation of Unstructured Meshes. Mathematics and
Visualization Hierarchical and Geometrical Methods in Scientific Visualization
143–170. doi: 10.1007/978-3-642-55787-3_9

[NF03]: Nah, Fiona, "A Study on Tolerable Waiting Time: How Long Are
Web Users Willing to Wait?" (2003). AMCIS 2003 Proceedings. 285.
http://aisel.aisnet.org/amcis2003/285

[Rail16]: Measure Performance with the RAIL Model , 2016, url:
https://developers.google.com/web/fundamentals/performance/rail

[Ga99]: M. Garland, Multiresolution Modeling: Survey and Future
Opportunities in "Eurographics 1999 - STARs. Eurographics Association",
doi:10.2312/egst.19991068

http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/geometry3D.html#IndexedFaceSet
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/geometry3D.html#IndexedFaceSet
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/rendering.html#Coordinate
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/rendering.html#Coordinate
http://dx.doi.org/10.1145/1499949.1500071
http://www.ti.inf.ethz.ch/ew/lehre/CG12/lecture/Chapter%205.pdf
http://dx.doi.org/10.1016/0304-3975(78)90051-8
http://www.sciencedirect.com/science/article/pii/0304397578900518
http://aisel.aisnet.org/amcis2003/285
https://developers.google.com/web/fundamentals/performance/rail

76

[ML16]: Kostas Kapetanakis, MPEG-DASH for X3D Streaming, 2016,
http://mclab1.medialab.teicrete.gr:8081/indexdash.html

[Utube16]: Blender Model Tutorial Polygon Reduction, 2016,
https://www.youtube.com/watch?v=ttU6Gz1W0Xw

[ADM16]: AUTODESK 3DS MAX - Level of Detail Utility, 2016,
https://knowledge.autodesk.com/support/3ds-max/learn-
explore/caas/CloudHelp/cloudhelp/2016/ENU/3DSMax/files/GUID-D112D015-
8BE6-4172-B816-B5432A50F911-htm.html

[BDM16]: Blender - Decimate Modifier, 2016,
https://www.blender.org/manual/modeling/modifiers/generate/decimate.html

[WX3dL]: LOD node definition, 2016,
http://www.web3d.org/documents/specifications/19775-
1/V3.0/Part01/components/navigation.html#LOD

[XfwaL]: Example for LOD node, 2016,
http://x3dgraphics.com/examples/X3dForWebAuthors/Chapter03-
Grouping/LODIndex.html

[SW08]: Daniel Scherzer and Michael Wimmer. 2008. Frame sequential
interpolation for discrete level-of-detail rendering. In Proceedings of the
Nineteenth Eurographics conference on Rendering (EGSR '08). Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 1175-1181.
doi=http://dx.doi.org/10.1111/j.1467-8659.2008.01255.x

[LDSS99]: Aaron W. F. Lee, David Dobkin, Wim Sweldens, and Peter
Schröder. 1999. Multiresolution mesh morphing. In Proceedings of the 26th
annual conference on Computer graphics and interactive techniques
(SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 343-350. doi=http://dx.doi.org/10.1145/311535.311586

[Hp96]: Hugues Hoppe. 1996. Progressive meshes. In Proceedings of the
23rd annual conference on Computer graphics and interactive techniques
(SIGGRAPH '96). ACM, New York, NY, USA, 99-108.
doi=http://dx.doi.org/10.1145/237170.237216

[PR00]: Renato Pajarola and Jarek Rossignac. 2000. Compressed
Progressive Meshes. IEEE Transactions on Visualization and Computer Graphics
6, 1 (January 2000), 79-93. doi=http://dx.doi.org/10.1109/2945.841122

http://mclab1.medialab.teicrete.gr:8081/indexdash.html
https://www.youtube.com/watch?v=ttU6Gz1W0Xw
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/3DSMax/files/GUID-D112D015-8BE6-4172-B816-B5432A50F911-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/3DSMax/files/GUID-D112D015-8BE6-4172-B816-B5432A50F911-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/3DSMax/files/GUID-D112D015-8BE6-4172-B816-B5432A50F911-htm.html
https://www.blender.org/manual/modeling/modifiers/generate/decimate.html
http://www.web3d.org/documents/specifications/19775-1/V3.0/Part01/components/navigation.html#LOD
http://www.web3d.org/documents/specifications/19775-1/V3.0/Part01/components/navigation.html#LOD
http://x3dgraphics.com/examples/X3dForWebAuthors/Chapter03-Grouping/LODIndex.html
http://x3dgraphics.com/examples/X3dForWebAuthors/Chapter03-Grouping/LODIndex.html
http://dx.doi.org/10.1111/j.1467-8659.2008.01255.x
http://dx.doi.org/10.1145/311535.311586
http://dx.doi.org/10.1145/237170.237216
http://dx.doi.org/10.1109/2945.841122

77

[LJBA13]: Limper, M., Jung, Y., Behr, J. and Alexa, M. (2013), The POP
Buffer: Rapid Progressive Clustering by Geometry Quantization. Computer
Graphics Forum, 32: 197–206. doi:10.1111/cgf.12227

[Sm98]: Stan Melax, A Simple, Fast, and Effective Polygon Reduction
Algorithm, 1998, http://www.melax.com/gdmag.pdf

[Gzz85]: Joshua Koo - zz85, SimplifyModifier: initial commit, 2016,
https://github.com/mrdoob/three.js/commit/3376a9b00ddb49fac9170b8038b4f34
b2770d039#diff-06d2b0be8475b2937e3b66e432271390

[SM02]: T. Suel, N. Memon, "Algorithms for Delta Compression and Remote
File Synchronization" in: In Khalid Sayood, Lossless Compression Handbook.
Academic Press, 2002

[SC12]: N. Samteladze and K. Christensen, "DELTA: Delta encoding for
less traffic for apps," 37th Annual IEEE Conference on Local Computer
Networks, Clearwater, FL, 2012, pp. 212-215.
doi: 10.1109/LCN.2012.6423611

[Pgit]: Scott Chacon, Ben Straub, 10.4 Git Internals - Packfiles, 2014,
https://git-scm.com/book/en/v2/Git-Internals-Packfiles

[Mer16]: Bryan O'Sullivan, Mercurial: The Definitive Guide, 2009
Sv16: Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato, Version
Control with Subversion, http://hgbook.red-bean.com/read/

[Do15]: Jozef Doboš, Management and Visualisation of Non-linear History
of Polygonal 3D Models, 2015, http://3drepo.org/projects/management-and-
visualisation-of-non-linear-history-of-polygonal-3d-models/

[GGS99]: Stefan Gumhold, Stefan Guthe, and Wolfgang Straßer. 1999.
Tetrahedral mesh compression with the cut-border machine. In Proceedings of
the conference on Visualization '99: celebrating ten years (VIS '99). IEEE
Computer Society Press, Los Alamitos, CA, USA, 51-58.

[LWSJS13]: Max Limper, Stefan Wagner, Christian Stein, Yvonne Jung, and
André Stork. 2013. Fast delivery of 3D web content: a case study. In Proceedings
of the 18th International Conference on 3D Web Technology (Web3D '13). ACM,
New York, NY, USA, 11-17. DOI=http://dx.doi.org/10.1145/2466533.2466536

[plvc]: VCDiff Javascript implementation, 2016,
https://github.com/plotnikoff/vcdiff.js

http://www.melax.com/gdmag.pdf
https://github.com/mrdoob/three.js/commit/3376a9b00ddb49fac9170b8038b4f34b2770d039#diff-06d2b0be8475b2937e3b66e432271390
https://github.com/mrdoob/three.js/commit/3376a9b00ddb49fac9170b8038b4f34b2770d039#diff-06d2b0be8475b2937e3b66e432271390
https://git-scm.com/book/en/v2/Git-Internals-Packfiles
http://hgbook.red-bean.com/read/
http://3drepo.org/projects/management-and-visualisation-of-non-linear-history-of-polygonal-3d-models/
http://3drepo.org/projects/management-and-visualisation-of-non-linear-history-of-polygonal-3d-models/
http://dx.doi.org/10.1145/2466533.2466536
https://github.com/plotnikoff/vcdiff.js

78

[Node]: Node.js, 2016, https://nodejs.org/en/

[Expr]: Express web application framework, 2016, http://expressjs.com/

[Npm]: npm package manager, 2016, https://www.npmjs.com/

[jQ]: jQuery, 2016, https://jquery.com/

[jQattr]: jQuery .attr(), 2016, http://api.jquery.com/attr/

https://nodejs.org/en/
http://expressjs.com/
https://www.npmjs.com/
https://jquery.com/
http://api.jquery.com/attr/

