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Abstract 

 

 In previous work an integrated adaptation framework has been proposed for the 

Web3D, using the X3D and the MPEG-DASH standards. By fusing those two, one can 

deliver multimedia content adaptively in X3D scenes following the HTML5’s plug-in free mind 

set. Since then, a problem remains of how to have a good network utilization when delivering 

refined or coarser versions of 3D models by only using open and royalty free web standards 

and without destroying the X3D’s human readable representation form. 

 When transmitting different levels of detail of a 3D model, we need to do it in a 

cumulative manner, thus preserving common geometry data. Considering the 

programmatically created and the hand crafted level of detail techniques, we need a way to 

support those two by offering an integrated solution based on current or emerging web 

standards. 

 Programmatically creating levels of detail, often needs the change of the 3D model’s 

data structure. This means that the content provider and the content consumer must agree 

for the what and how to implement before runtime, thus driving into case per case solutions. 

Also, when following the hand-crafted approach, chances are that there is common geometry 

data in-between the levels of detail. So when delivering them as individual entities will result 

into poor bandwidth utilization. 

 To alleviate these issues we will consider a context agnostic approach, namely delta 

encoding or delta compression, for transmitting levels of detail of 3D models in a unified 

environment. 
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Σύνοψη 

 

 Σε προηγούμενη δουλειά έχει προταθεί ένα ολοκληρωμένο σύστημα προσαρμόσιμου 

πολυμεσικού υλικού για το Web3D χρησιμοποιώντας τα πρότυπα X3D και MPEG-DASH. 

Συνδυάζοντας αυτά τα δύο, μπορούμε να πραγματοποιήσουμε μετάδοση προσαρμόσιμου 

πολυμεσικού υλικού σε X3D σκηνές ακολουθώντας μια λογική η οποία είναι ελεύθερη από 

αρθρώματα. Ένα πρόβλημα που παραμένει όμως είναι το πώς μπορούμε να έχουμε μια 

καλή εκμετάλλευση του δικτύου όταν μεταδίδουμε διαφορετικά επίπεδα ποιότητας 3Δ 

γραφικών χρησιμοποιώντας μόνο ανοιχτά πρότυπα και χωρίς να αλλάξουμε την αναγνώσιμη 

από ανθρώπους μορφή περιγραφής του X3D. 

 Όταν μεταδίδουμε διαφορετικά επίπεδα ποιότητας 3Δ γραφικών πρέπει να το 

κάνουμε με έναν συσσωρευτικό τρόπο έτσι ώστε να μπορούμε να επαναχρησιμοποιήσουμε 

τα κοινά δεδομένα γεωμετρίας. Έχοντας ως βάση την δημιουργία επιπέδων ποιότητας με 

προγραμματιστικό τρόπο αλλά και με το χέρι, χρειαζόμαστε μια ολοκληρωμένη λύση που να 

μπορεί να υποστηρίξει αυτές τις δύο διαφορετικές μεθοδολογίες και η οποία θα βασίζεται σε 

σύγχρονα και αναδυόμενα πρότυπα. 

 Ο προγραμματιστικός τρόπος δημιουργίας επιπέδων ποιότητας συνήθως απαιτεί την 

αλλαγή της δομής δεδομένων που χρησιμοποιείται για την περιγραφή του 3Δ μοντέλου. Αυτό 

σημαίνει πως ο πάροχος και ο καταναλωτής του περιεχομένου πρέπει να συμφωνήσουν εκ 

των προτέρων για το τι και το πως θα υλοποιηθεί. Με αυτόν τον τρόπο οδηγούμαστε σε ανά 

περίπτωση υλοποιήσεις. Επίσης όταν χρησιμοποιούμε την δεύτερη μεθοδολογία δημιουργίας 

επιπέδων ποιότητας, οι πιθανότητες είναι πως θα έχουμε κοινή πληροφορία μεταξύ των 

επιπέδων. Οπότε αν μεταδώσουμε τα επίπεδα αυτά ως ανεξάρτητες οντότητες θα έχουμε 

χαμηλή εκμετάλλευση του δικτύου. 

 Για να ξεπεράσουμε τα θέματα αυτά προτείνουμε μια προσέγγιση του προβλήματος 

στην οποία το μεταδιδόμενο περιεχόμενο θα μας είναι αδιάφορο. Πιο συγκεκριμένα, στο 

ολοκληρωμένο περιβάλλον μετάδοσης 3Δ γραφικών που θα δώσουμε θα χρησιμοποιήσουμε 

συμπίεση δέλτα. 
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Chapter – 1 

 

1.1 - Introduction and previous work 

 

 Recent advancements in Web technologies, offer the ability to deliver multimedia 

content in a heterogeneous environment of platforms and devices. To achieve this, a great 

number of standards has been introduced, although not all of them are implemented on a 

large scale or exploited on their full potential. 

 For many years, multimedia content delivery and interaction over the web was mostly 

supported by using proprietary, closed source solutions. The most notable example is the 

Adobe’s, Adobe Flash Player, a freeware plug-in that enables audio and video, as well as 

vector, raster and 3D graphics support for the web browser. Although serving it’s purpose 

well over the years, one of the disadvantages of this approach is that it breaks 

interoperability. In the list of HTML elements [WHV14] of the latest HTML specification there 

are some interesting elements, at least from the perspective of the multimedia field, that offer 

native support of audio, video and graphics in the browser. Specifically, in the subcategory of 

embedded content lie the audio and video elements and in the scripting subcategory lies the 

canvas element. 

 Today’s client side scene is formed not only by the well known desktop computers. 

New portable devices came into, such as smart phones and tablet computers, that are 

connected to the web using wireless and often unreliable connections. In addition to that they 

have limited processing power, reliance on battery and limited viewing capabilities mostly 

due to their size, the goal of achieving a good QoE becomes even harder. One of the 

approaches and sometimes combined with others to alleviate this issue, adaptive bitrate 

streaming is used. 

 Adaptive bitrate streaming is a technique for streaming multimedia content over a 

network to the client in an adaptive manner. Meaning that while streaming, the content is 

adapted according to the client’s processing power and network bandwidth capabilities. 

Some implementations of adaptive bitrate streaming include the Adobe HTTP Dynamic 

Streaming, Apple HTTP Live Streaming and the Microsoft Smooth Streaming. None of them 

is a standard though, meaning that they fail interoperability wise. To overcome this, 

companies like Microsoft, Apple, Netflix and others, participated in the standardization of the 

MPEG-DASH, an industry oriented, open and international standard. In addition, the MPEG-

DASH delivers content using the HTTP protocol, so content can be delivered using the 

already widely used and well adopted HTTP over TCP [IRS11] [SAC11] . 
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 The directions of how an MPEG-DASH client can switch between different quality 

media streams are described in an MPD file. The MPD can be obtained usually via the web 

and is an XML, human readable file. In fact, in the sense that MPEG-DASH and HTML5 

technologies can be complementing when consuming media content, the DASH-IF 

developed a Javascript player for the browser, for supporting adaptive video capabilities. 

 X3D is an open, royalty free ISO standard managed by the Web3D Consortium, that 

represents 3D graphics in XML format, readable by both humans and computers, that is 

supported by stand-alone implementations or browser plug-ins, at least until recently. To 

overcome the disadvantages of using browser plug-ins,  Behr et al. [BEJZ09] presented the 

X3DOM, a DOM based model that gives a seamless integration between X3D and HTML5 

without using plug-ins. 

 On their first attempt to extend the X3DOM’s  adaptation methods, Kapetanakis et al. 

in [KPMZ14] provide a mechanism of adaptive HD video inside 3D virtual reality worlds by 

merging it with MPEG-DASH. The offered implementation consists of extending the 

X3DOM’s MovieTexture element to work with the DASH video player [GIT14][ML14] . 

 Although the MPEG-DASH was designed to be primarily used for temporal content, 

such as audio and video, it does not explicitly restrict the media type that can be used. Given 

that the X3D is an ISO standard and that the model/x3d+xml is a registered MIME type, 3D 

models written in X3D should be compatible with the MPEG-DASH. Based on this, 

Kapetanakis in his thesis [KK14], extends the previous mechanism in order to additionally 

support adaptive 3D model delivery. In his work he also describes how the 3D models should 

be treated so they can be successfully included  in an MPD file. As an overview, the 3D 

models are segmented into levels of detail and can be sequentially transmitted to the client. 

Also the client can adapt the 3D model by requesting the corresponding segment, or level of 

detail. 

 This work only suggested the first steps into creating such an adaptation system and 

only supported simple cases where only a single 3D model was included into an X3D scene. 

Zamploglou et al. in [ZKSMP16] continue the research on the potential of supporting 

adaptive streaming of complex X3D scenes, where a plethora of geometries, audio, image 

and video textures are included. 

 An issue that remains though, is how to have a good network utilization when 

transmitting different segments, or levels of detail, described in the MPD. To give a solution 

approach to that, first we have to have an understanding of the term LOD of a 3D model. The 

first ideas of the LOD were introduced by J. Clark [JHC76] and in a sense is technique for 

representing an object with different geometry complexities. The goal of this technique is to 

reduce the representation complexity of an object in order to reduce computation 

requirements when such resources cannot be met or when the object is viewed from a far 

distance. There is no restriction to that the LOD technique can only be used for the geometry 

of a model, it can also be applied to shaders and texture maps, but in this work we are 
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interested in the model’s geometry. A qualitative graphical representation, describing the 

fidelity and the geometry complexity relationship, is given on Figure 1.  

 There are three basic approaches or frameworks of LOD and these are the discrete, 

continuous and view-dependent LODs. In the case of the discrete LOD, the object is 

separated into some number of individual models of different fidelity before the runtime. 

Usually, those LODs are hand-crafted by a graphics artist(s), if not exported by some mesh 

simplification algorithm implementation. Using this approach, gives us the ability to control of 

what will be viewed to the user. On the contrary, in the continuous LOD case, the model is 

encoded in a data structure such that we can extract the desired LOD  from a continuous 

spectrum of LODs. This approach gives better granularity and minimizes the popping effect 

when changing LOD. Also, the case of the view-dependent LOD can be considered as an 

extension of the continuous LOD, in the sense that the geometry simplification varies in 

different areas of the model, usually according to the camera – area distance. Such an 

example is when viewing a terrain, where areas closer to the camera have more geometry 

information than areas that are farther away. 
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Figure 1: The more the fidelity, the more the cost to transmit 
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1.2 - Problem definition 

 

 The main goal of this thesis is to give a solution approach that changes, in the sense 

of extending the X3D’s already defined nodes, are kept at the most minimal if not non 

existent all. Further more, the standard uses a representation form about the vertices and the 

edges of the model, that is human readable and we wish to keep it that way. In addition, we 

want to support both the discrete and the continuous LOD frameworks in our solution. 

 Also, the MPEG-DASH player developer is already occupied with solving problems 

such as content adaptation in real time. So it is quite important to offer a simple API for the 
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delivery of the adaptive models. To achieve this, our solution should support the two different 

LOD frameworks in a unified way. 

 As an X3D client, we will use the X3DOM client that was mentioned above, but let’s 

not forget that the X3DOM is only one of the many implementations of the X3D standard that 

exist. A reference list of the currently available implementations can be found in [X3DP16]. 

This makes it vital that our solution is based on standards and is not focused only on a single 

X3D client. 

 As described in the previous section, continuous LOD frameworks encode the model 

in a data structure such that it allows the implementation of some geometry simplification 

algorithm and the extraction of the desired LOD. The issue with this approach is that there 

are no standard data structures and algorithms that are used among all implementations. A 

commonly used one though, is the half edge data structure. In addition, some of them, 

encode the model in some binary form, thus destroying the X3D’s human readable 

representation form. This could not be a quite bad thing, considering the gain in 

performance, but some binary forms are proprietary and not freely available, so they break 

the open standard mind set. 

 The need for using more sophisticated data structures, other than usual X3D’s 

indexed face set, comes from the need that these algorithms depend on queries about the 

geometry and connectivity of the model. These queries are mostly about the adjacency and 

incidence of the building blocks of the model. For example, queries such as which faces 

share a particular vertex, or which edges are adjacent. Of course, such information can be 

extracted even with the X3D’s indexed face set, but this  data structure is not designed to 

store any kind of explicit information to satisfy these queries quickly, without having to 

traverse the model’s geometry and connectivity repeatedly for every single query during the 

run time. 

 In Mauro Figueiredo et al. [FRSV14] a framework that supports interactive topology 

queries on  3D models is presented. The given open source implementation, named TopTri, 

allows 3D web client applications to make queries about vertex, edge and face adjacency 

and incidence on the web server without the need of changing the model’s data structure 

that is already used on the client. Instead the web server is responsible for such operations. 

Although implemented in the Python scripting language, the web server is satisfying fast 

enough to serve those queries even for large models and real time applications. While 

testing their proposed framework, Mauro Figueiredo et al. did not use any kind of continuous 

LOD algorithm as their test bench. Instead they implemented algorithms that can identify 

stalactites in a cave, using the web browser as the client runtime environment. 

 The TopTri toolkit, relieves the client from implementing a sophisticated data 

structure for continuous LOD, so it seems that is suitable for our needs. A solution approach 

for our system for transmitting  adaptive 3D models, using that framework, is not fully 

investigated yet. Thus we are in a position that we can not give a clear answer about the 
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level of changes that have to be made to the client, in order to at least support only the 

continuous LOD framework. 

 As for the discrete LOD framework, the geometry and connectivity between different 

levels of detail  is disjoint. So there is not an obvious or straightforward approach to support 

a transmission that is free of redundant geometry information. A first approach that we 

considered in order to send only the changes that have to be made to reconstruct the target 

mesh, was to use a technique named geomorping or mesh interpolation or metamorphosis. 

This technique is widely used where there is the need to express a smooth transition 

between two models. For example an animation of an infant growing up to an adult or the 

transition between different facial expressions. In particular, from the perspective of LOD, it is 

used to eliminate or at least minimize the popping effect when changing the level of detail. 

 As in [Par05], there are three main steps that are followed to achieve a multi-

resolution mesh morphing. First we need to find correspondence between the vertices of the 

source mesh to the target mesh. Note that vertex to vertex correspondence cannot be 

always achieved because the two meshes may have different number of vertices. So we 

compromise with some arbitrary point in 3D space near the source – target mesh. The same 

step has to be repeated in the opposite direction in order to find the vertices correspondence 

between the target and the source mesh this time. Finally we merge the connectivity of the 

two input meshes in order to produce a new mesh representation that shares the 

connectivity of these two meshes. This new mesh representation is often called the 

supermesh. Now using the produced supermesh we can bidirectionally interpolate between 

the two meshes. 

 As a rough calculation of the memory size that the supermesh requires, without 

considering the memory cost for the connectivity, we have: 

𝐵𝑦𝑡𝑒𝑠(𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦(𝑠𝑢𝑝𝑒𝑟𝑚𝑒𝑠ℎ)) = 𝑏(𝑁(𝑉𝑠) + 𝑁(𝑉𝑡)) 

Where b is the number of bytes required to store a single vertex, N(Vs) the number of 

vertices of the source mesh and N(Vt) the number of vertices of the target mesh. So we 

concluded that this size of overhead leads to an unworkable scenario. This led us to leave 

the investigation of this solution approach quite early. Even though we did not follow this path 

in this thesis, we do not completely reject the probability of a solution based on morphing 

between arbitrary and multi-resolution meshes exists. 

 Talking about the changes that have to made in order to reconstruct the target mesh, 

having the current mesh as the reference mesh, we came up with the idea of applying delta 

encoding. Delta encoding or delta compression, also known as delta differencing in its more 

general description, is a technique for describing a sequence of input entities in the form of 

differences between them. By doing that, data that is common in-between the entities is not 

repeated, thus reducing the requirements of storage space, or bandwidth if we are in the 

case of transmission. An every day example that delta compression is used is the case of 

remote file synchronization. 
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 Chun in [Wc12]  is dealing with the transmission of 3D models in WebGL scenes 

over HTTP for the Google Body project. Having in mind that the GZIP algorithm was 

primarily designed for compressing text input, LZ77 phrase matching will most likely fail with 

something that is not structured, like in our case lists of vertices and indices. In order to 

optimize the model for compression, Chun approaches the vertices and indices data as 

signals and uses delta encoding. 

 Now in the sense that a web resource may change over time and that the new 

instance of that resource will most likely be similar with the older one, Mogul et al.  [MDFK97]   

discuss and quantify the potential benefits of using delta encoding and delta compression for 

HTTP responses and their results are encouraging. In K. Psounis’s work [Pks02] dynamically 

created web content is separated into base documents, named as classes, and content 

responses are sent in the form of deltas. Experimental results of his work show that by using 

the class-based delta model, bandwidth consumption is reduced by a factor of 30. 

 The Chromium [Chr02] project, the descendant of WireGL [WG01] , offers a 

framework for scalable cluster rendering. In a sense, the client sends frames of OpenGL 

commands to be rendered by a cluster of workstations on its behalf. Gasparello et al. in 

[GMBTB11] deal with the distribution of OpenGL command streams over a network by using 

their own Chromium-like system as their base framework. In order to have a good network 

utilization, they propose the use of in-frame and inter-frame compression. Inter-frame 

compression aims on eliminating or at least reduce the redundant data that exist between 

consecutively frames. For example and in the case of a scene where there is only one 

moving object, lets say the camera, only the translation commands need to be streamed. 

They achieve this by using the open-vcdiff tool, an open source implementation of the 

VCDIFF delta encoding algorithm and file format. 

 The RFC 3229 proposed standard as its current state [RFC3229], introduces delta 

encoding in HTTP. The RFC 3229 tries to deal with problem of serving slightly and frequently 

modified resources for which the client already has one or more older instances in its cache. 

Based on the observation that the modification of a resource is much smaller then the 

resource itself, this RFC proposes delta encoding to be used in such cases, avoiding that 

way of sending redundant bytes on the response. 

 Although the RFC 3229 works well for same URL responses, it is not suitable for 

content that is  dynamically created with varying URL query parameters. For example search 

results pages. To overcome this limitation, Butler et al. in [BLM16] propose the SDCH , 

pronounced as “sandwich” [Li15] , protocol. In their proposal, a dictionary file is shared 

between the server and the client, containing strings that have high chances of appearing in 

future HTTP responses. If both sides support SDCH and the client does not have any 

dictionary from server, or has an outdated version, the latest dictionary file is sent out of 

band. If both sides support SDCH and the client has a valid copy of the dictionary, then the 

HTTP response is represented as references to strings in the shared dictionary. The 

compression scheme is named as SDCH encoding and is VCDIFF based. 
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1.3 - Solution Approach 

 

 Even though there is some work done about data and mostly web page content 

transmission over the Internet by using delta encoding, there is no work, at least in our 

knowledge, that explicitly covers transmission of 3D models and their levels of detail over 

HTTP based on this technique. Nevertheless the adoption promise of delta encoded HTTP 

responses is quite encouraging. 

 The main advantage of using this kind of technique, from our point of view, is that 

without extending or modifying the X3D standard we can support the discrete and continuous 

level of detail frameworks simultaneously. Fulfilling that way the two promises that were 

given for offering support of the two different LOD frameworks in a unified way and keeping 

the need for changes minimal. In fact, in this work the X3D standard was kept as is. 

 We can also fulfill the promise of not altering the human readable representation 

form that the X3D uses for describing 3D models. More precisely the IndexedFaceSet node. 

Additionally and given that the delta compression is a context agnostic compression scheme 

we can also support binary formats and scene assets other than 3D models, even though 

this was not our goal. 
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  Even though we are aware that by implementing a solution that already exists in the 

literature of the continuous framework might yield better performance results and smaller 

network bandwidth requirements, we follow an ubiquity and interoperability over performance 

solution approach. An overview graphical representation of our proposed solution is given on 

Figure 2. 

 

 As we can see on Figure 2 and on the client’s side, we have the X3D client using an 

MPEG-DASH adaptation mechanism. This adaptation mechanism is responsible for taking 

performance metrics and adapting the LOD of the models which are described in the MPD 

file. In the case that the desired LOD does not exist on the client, the MPEG-DASH 

adaptation mechanism sends the appropriate request to the server using HTTP and 

additionally advertises the current LOD that already has and on which the delta patch will be 

applied on. 

 On the server’s side, when that kind of request arrives, the LOD Framework 

mechanism extracts the requested LOD. Then the delta between the requesting LOD and 

the current LOD that the client already has is computed and sent to the client as an HTTP 

response. 

 
Figure 2: Proposed system overview 
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 Architecture wise, our proposed solution has the advantage of minimal changes on 

the web server that serves the scene assets. That is because the LOD Framework 

mechanism can be added in the current configuration in the form of a module. 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter – 2 

 

2.1 – Background research 

  

 In this chapter we are going to present the background research that has been 

made. First we will make ourselves familiar with what is a 3D model and how it is 

represented as a polygon mesh. Next, we will discuss some useful data structures for storing 

polygon meshes that we can use to extract the desired fidelity of the 3D model using the 

continuous level of detail framework. 

 In general, the extraction of the desired fidelity is achieved by using a mesh 

simplification algorithm that consecutively simplifies the model starting from the original 

version until the most coarse version is reached. Then we encode the steps that were taken 

in a way such that we can extract the desired level of detail at any given time. 

 We will also present the small research that has been made about geomorhping. As 

mentioned earlier in the previous chapter the geomorphing technique was investigated as a 
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solution approach for delivering the model’s levels of detail. But the – roughly -  calculated 

overhead that is required for the transmission is discouraging. 

 

2.2 – 3D Models and Polygon Meshes 

 

 A thee dimensional model, or 3D model is a mathematical representation of a three 

dimensional surface. These models can be created manually by using a 3D designing 

software for example, or by 3D scanning of real world objects. The most widely 

representation scheme used for 3D models is the polygon mesh. 

 The polygon mesh is a mesh of vertices, edges and faces that describe a polyhedron 

object. The vertices are points in 3D space that are described by their coordinates, for 

example Vn = ( xn , yn , zn ) . The edges are straight lines that connect two vertices and can be 

described as En = ( Va , Vb ) . Faces are simple convex or concave polygons. A simple 

polygon is a polygon that consists of non-intersecting line segments, or in other words there 

are no pairs of edges that cross each other.  In a convex polygon, there is no internal angle 

that exceeds 180o  , in a concave polygon there is at least one internal angle that is larger 

than 180o . In computer graphics, the most used type of faces is the triangle and more rarely 

quadrilaterals, faces with four vertices and edges.  Figure 3 gives an example of simple and 

complex polygons. Figure 4 gives a graphical representation of the relationships between the 

vertices, edges and faces. 

 The connectivity or the topology of a mesh refers to how the vertices are connected 

in order to form the edges and faces of the mesh. The geometry of a mesh refers to the 

coordinates of the vertices. Thus for a given 3D conceptual representation of an object we 

can have different meshes with the same geometry and different topology. Figure 5 gives a 

graphical representation about the geometry and topology of a mesh. 

 Meshes can be manifold or non-manifold. A mesh can be considered manifold if 

every edge touches only one or two faces and faces that are incident to a vertex form a 

closed or an open fan. Also in a non-manifold mesh, adjacent faces can share o single vertex 

without sharing an edge. Some mesh simplification algorithms require only manifold meshes 

as an input. Figure 6 gives a visual representation about manifold and non-manifold meshes. 
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Figure 3: 

Polygons (a) and (b) are simple polygons. 

Polygon (c) is a complex polygon. 

Polygon (a) is convex. 

Polygon (b) is concave. 

The shapes were taken from: 

https://en.wikipedia.org/wiki/Convex_polygon#/media/File:Pentagon.svg 

https://en.wikipedia.org/wiki/Concave_polygon#/media/File:Simple_polygon.svg 

https://en.wikipedia.org/wiki/Complex_polygon#/media/File:Complex_polygon.svg 

https://en.wikipedia.org/wiki/Convex_polygon#/media/File:Pentagon.svg
https://en.wikipedia.org/wiki/Concave_polygon#/media/File:Simple_polygon.svg
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Figure 4: Relationship between vertices, edges and faces. This figure is a part from 

https://en.wikipedia.org/wiki/Polygon_mesh#/media/File:Mesh_overview.svg 

 
Figure 5: 

In (a) we have same geometry with different topology. 

In (b) we have same topology with different geometry. 

Imagery taken from: http://www.cs.dartmouth.edu/~cs77/slides/07_meshes.pdf 
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 There are two main representation schemes of polygon meshes that are used, 

among others. First we have the explicit vertex list representation, also known as Vertex-

Vertex meshes, where every group of vertices represents a face. The other representation 

scheme, also known as Face-Vertex meshes, uses two lists, an indexed list of vertices that 

holds their coordinates and a list of vertex indices. Every group of vertex indices represents a 

face. The Face-Vertex representation scheme is also used by the X3D to describe polygon 

meshes. More precisely, the IndexedFaceSet node is of that type. Figure 7 describes these 

two representation schemes. 

 

 

 
Figure 6: 

(a): A manifold mesh forming a closed fan. 

(b): A manifold forming an open fan. 

(c): A non-manifold where two faces share a single vertex and no edge. 

Part of the images was taken from: 

https://www.cs.mtu.edu/~shene/COURSES/cs3621/SLIDES/Mesh.pdf 
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2.3 – X3D’s IndexedFaceSet Node 

 

 As described in [WX3D], X3D essentially is an XML document, meaning that every 

entity that composes a 3D world and its interaction is described in a hierarchy of nodes in a 

parent-child relationship. Among the nodes that can represent 3D objects, the 

IndexedFaceSet node is used to represent 3D objects in a Face-Vertex manner that was 

previously described. 

 This node, as in [X3DIFS] extends the X3DComposedGeometryNode and uses groups of 

vertex indices separated by “-1” in order to form the faces. These indices are 32 bit integers 

that are defined in the node’s coordIndex attribute field. To define the vertices, this node uses 

the Coordinate node as its child node. The Coordinate node as in [X3DCoo] extends the 

X3DCoordinateNode and uses its point attribute field to define 3D coordinates. 

 
Figure 7 : (a) is a Vertex-Vertex mesh, (b) is a Face-Vertex mesh. 

Imagery taken and mixed from: 
http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/meshes/polygon_meshes.html 



23 

 

2.4 – More sophisticated mesh data structures 

 

 Even thought the Vertex-Vertex and Face-Vertex meshes have simple and 

straightforward way to represent 3D models, there are some cases where we need to 

answer questions about the connectivity of a mesh. These questions are related with the 

adjacency and incidence of the vertices, edges and faces of the mesh. For example, which 

faces are incident to a given vertex or which faces are incident to a given face or which 

edges are adjacent. This kind of queries can be answered using the Vertex-Vertex and Face-

Vertex representation schemes, but because no such explicit information is held about the 

connectivity, we have to traverse the whole geometry data many times for every query. 

Additionally, we need to be able to make operations on the geometry and connectivity in 

order to add or remove vertices and faces of the mesh. The operations of vertex and face 

removal are important to mesh simplification algorithms that can reduce the fidelity of a 3D 

model. These two reasons led to the creation of other data structures in order to solve that 

problem, but with the cost of more memory usage. 

 There are quite a few mesh data structure that solve that problem, the most used 

one though is the half-edge, which is an extension of the winged-edge data structure but 

they both work only on oriented and manifold meshes. The main idea of these two data 

structures is that for every vertex of the mesh, we hold references or pointers to the other 

elements of the mesh. 

 

 
Figure 8: A code example of the IndexedFaceSet node 
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2.4.1 – Winged Edge data structure 

 

 Baumgart in [Bau75]  presents the winged-edge data structure. In his work, a 

polyhedron consists of four types of nodes. These are the bodies, faces, edges and vertices. 

The body node is a head of a ring of faces, a ring of edges and a ring of vertices. A ring is a 

doubly linked circular list with a head node. 

 In this data structure, each face and vertex point to one edge. Each edge points to 

two faces and two vertices. Finally each edge points to four edges, two in a clockwise 

direction and two in a counter-clockwise direction. The last four pointers form a conceptual 

wing and this why this data structure got that name. Figure 9 gives an illustration of the 

winged-edge data structure. 

 

 

 

 
Figure 9: Winged Edge overview 
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While standing on the CE and while looking up, we can define the following pointers: 

• NFACE: The next face. 

• PFACE: The previous face. 

• NCCW: The next edge in a counter-clock wise order. 

• NCW: The next edge in a clockwise order. 

• PCW: The previous edge in a clockwise order. 

• PCCW: The previous edge in a counter-clock wise order. 

• PVT: The previous vertex. 

• NVT: The next vertex. 

 

A sample code implementing the data structure in the C language could be the following: 

 

struct Edge 

{ 

 Edge *nccw, *pcw, *ncw, *pccw; 
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 Face *nface, *pface; 

 Vertex *pvt, *nvt; 

 // Other edge data 

}; 

 

struct Face 

{ 

 Edge *edge; 

 // Other face data 

}; 

 

struct Vertex 

{ 

 Edge *edge; 

 // Other vertex data 

};            

    

 

 As mentioned above, in order to implement a continuous LOD technique 

on our input mesh, we must be able to make operations on the mesh such as 

face, edge and vertex insertion and removal. Baumgart in his work besides 

describing the data structure, also gives us two reference procedures that we can 

 
Figure 10: The effects of applying the MKFE and KLFE procedures 
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use. The MKFE procedure, or “Make Face-Edge”, adds a pair of a face and 

vertex into the surface topology. The KLFE, or “Kill Face-Edge” procedure 

removes a face-vertex pair. Figure 10  [Bau75] gives an illustration of the effects 

of applying these two procedures. Below that illustration, the refined pseudo-

code for the two procedures is given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
INTEGER PROCEDURE MAKE_FACE_EDGE (INTEGER V1,V2,FACE); 
 
BEGIN “MAKE_FACE_EDGE” 
 
 // CREATE NEW FACE & EDGE 
 FNEW ← MAKE_FACE(FACE); 
 ENEW ← MAKE_EDGE(PREVIOUS_EDGE(FACE)); 
  
 // LINK NEW EDGES TO ITS FACES & VERTICES 
 PREVIOUS_EDGE(F) ← PREVIOUS_EDGE(FNEW) ← FNEW; 
 PREVIOUS_FACE(ENEW) ← F; 
 NEXT_FACE(ENEW) ← FNEW; 
 PREVIOUS_VERTEX(ENEW) ← V1; 
 NEXT_VERTEX(ENEW) ← V2; 
 
 // GET THE WINGS OF THE NEW EDGE 
 E2 ← PREVIOUS_EDGE(V1); 
 DO 
  E2 ← NEXT_EDGE_CW( (E1 ← E2), V1 ) 
 UNTIL 
  NEXT_FACE_CW(E1, V1) = FACE; 
 E4 ← PREVIOUS_EDGE(V1); 
 DO 
  E4 ← NEXT_EDGE_CW( (E3 ← E4), V2 ) 
 UNTIL 
  NEXT_FACE_CW(E3, V2) = FACE; 
  
 // SCAN CCW FROM V1 REPLACING FACE WITH FNEW; 
 E ← E2; 
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INTEGER PROCEDURE KILL_FACE_EDGE (INTEGER ENEW); 
 
BEGIN “KILL_FACE_EDGE” 
  
 // PICKUP ALL THE LINKS OF ENEW 
 FACE ← PREVIOUS_FACE(ENEW); 
 FNEW ← NFACE(ENEW); 
 V1 ← PREVIOUS_VERTEX(ENEW); 
 V2 ← NEXT_VERTEX(ENEW); 
 E1 ← PREVIOUS_EDGE_CW(ENEW); 
 E2 ← NEXT_EDGE_CCW(ENEW); 
 E3 ← NEXT_EDGE_CW(ENEW); 
 E4 ← PREVIOUS_EDGE_CCW(ENEW); 
 
 // GET ENEW LINKS OUT OF FACE, V1, V2 
 IF PREVIOUS_EDGE(V1) = ENEW THEN 
  PREVIOUS_EDGE(V1) ← E1; 
 IF PREVIOUS_EDGE(V2) = ENEW THEN 
  PREVIOUS_EDGE(V2) ← E3; 
 IF PREVIOUS_EDGE(FACE) = ENEW THEN 
  PREVIOUS_EDGE(FACE) ← E3; 
 
 // GET RID OF FNEW APPEARANCES 
 E ← E2; 
 DO 
  IF PREVIOUS_FACE(E) = FNEW THEN 
   PREVIOUS_FACE(E) ← FACE; 
  ELSE 
   NEXT_FACE(E) ← FACE; 
 UNTIL 
  E4 = (E ← NEXT_EDGE_CCW(E, FNEW)); 
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2.4.2 – Half Edge data structure 

 

 The Half-Edge is probably the most widely used data structure when it comes to 

computational geometry. As stated in [Zcg12]  and we agree with that, the origin of the 

current form of the Half-Edge is hard to find. Nevertheless, in order to find out if two convex 

polyhedra intersect each other, Muller and Preparata in [MP78] presented the Doubly 

Connected Edge List as the base data structure of their algorithm, which its logic is identical. 

 In the Half-Edge data structure, every edge is split into two parts, the two halves of 

the edge, that have opposite directions. Those two parts are called half-edges, hence the 

name of the data structure. This data structure does not explicitly describe any edges, 

instead the edges are implied by their two half-edges. 

 Every half-edge points to its opposite twin half-edge. Additionally, every half-edge 

stores a target vertex but no origin vertex, as opposed to the edge that has one start and one 

end vertex. Given that the mesh is oriented and that twin half-edges look at opposite 

directions, if we want to get the origin vertex of a half-edge we need to get the target vertex 

of its twin. Also and given that the Half-Edge data structure is oriented counter-clock wise, 

the left half-edge always touches a face and the right always touches its twin. Below there is 

a sample code in C implementing the Half-edge data structure. Figure 11 gives an illustration 

of the data structure. The blue arrow, denoted by h is one of the edge’s half-edge and the 

arrow on its right is its twin. 

 
 
 
 
 
 

struct HalfEdge 
{ 
 HalfEdge* heTwin;   // The twin half-edge 
 HalfEdge* heNext;   // The next half-edge 
 HalfEdge* hePrevious;   // The previous half-edge, this is optional 
 Vertex*   vTarget; // The target vertex 
 Face*     face;  // The bordering face 
 
 // Other data 
} 
 
struct Vertex 
{ 
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Figure 11: Half-edge overview [Zcg12] 
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The following enumerated list gives a summary of what the elements of a mesh 
point to. Figure 12 gives an illustration of this list. 
 

1. Every vertex points to the one outgoing half-edge. 

2. Every face points to one arbitrary half-edge that is inside its boundary. A face can be 

surrounded by many half-edges. In the case of a triangular mesh, a face is 

surrounded by three half-edges. 

3. Every half-edge points to its target vertex. 

4. Every half-edge points to its touching face. 

5. Every half-edge points to its next half-edge. 

6. Every half-edge point to its opposite – twin half-edge. 

7. Optionally, every half-edge points to its previous half-edge. 
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The code below is an example of how to find adjacent edges for a given face. The idea is to 

race through all the half-edges pointed by the heNext pointer of the previous half-edge until 

we meet the half-edge from which we started. 

 

 

 

 

 

 

 
Figure 12: Illustrated Half-Edge enumerated list of references [BSBK02] 

 
HalfEdge* heStart = face→he; 
HalfEdge* heRunner = heStart; 
 
do 
{ 
 
 heRunner = heRunner→heNext; 
 
} while (heRunner != heStart); 
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2.4.3 – Lath based data structures 

 

 Assuming that the geometry can be expressed by vertices, Kenneth I. Joy et al. in 

[JLM03] present the lath data type. Each lath element can be connected to another lath 

element and that body of connections express the topology of the mesh. A single lath can be 

identified by using a record of a vertex, an edge and a face. Also, each of the face-edge, 

face-vertex, edge-vertex pairs can be associated with a single lath element. Figure 13 gives 

an illustration of a half-edge mesh representation implemented with the lath data type. 

 

 

 

 

 

 

 

 

 

 

 

 

 As we can see, a lath element L holds a reference to a single vertex. The 

“companion” field points to the lath Lcomp . The Lcomp lays on the same edge as L and 

references the opposite vertex of the edge. Thus an edge can be described as a pair of laths 

that have this “companion” relationship. The “vertex_clockwise” field points to the next lath in 

a clockwise vertex traversal. Figure 14 shows that the lath’s contiguous structure forms two 

kinds of loops, one in a clockwise direction around a vertex and one in a counter-clockwise 

direction inside a face. 

 

 

 

 
Figure 13 [JLM03] 



34 

 

 

 

 

 

 

 

The traversal of the mesh elements can be done by using the following operations: 

 
Figure 14 [JLM03] The laths form two kinds of loops, a clockwise around a vertex 
and a counter-clockwise inside a face. 
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• ec(L): return the L’s edge companion. 

• cv(L): return the lath that follows L that is defined in the L’s “vertex_clockwise” field. 

• ccf(L): return the lath that follows L in a counter-clockwise traversal of the face that L 

represents. 

• cf(L): return the lath that follows L in clockwise traversal of the face. 

• ccv(L): return the lath that follows L in counter-clockwise traversal around the L’s 

vertex. 

 

 

2.5 – Level of Detail 

  

 The Level Of Detail in applications that use 3D models, such as computer games, is 

a technique for representing a 3D model in different levels of fidelity. What this means for the 

geometry of a model is that we can reduce or increase the number of vertices. This can be 

useful in cases where the available processing power for rendering the model with a given 

geometry complexity is insufficient or when the model is placed away from the camera. For 

example, a dodecahedron when viewed from a far distance can be perceived by the human 

eye as a sphere. For that reason rendering the full geometry of the model would be a waste 

of computational resources. 

 The size of 3D models is increasing day by day. Thus they need more memory for 

storage, as well as more computing power to be rendered. Although the computing and 

storage capabilities, even in home computing, become noticeably better year by year, the 

Internet’s average speed does not keep up with the same pace. This becomes a problem 

when 3D models that are above the medium size, need to be transmitted as a Web3D’s 

scene assets. In that case and in order the model to be viewed, the user will have to wait for 

an undesirably long time until the model is fully loaded. 

 Nah in [NF03] suggests that the average website user is willing to wait for at most 

two seconds until the web content is loaded. As in [Rail16] is suggested that interactive 

content has to be delivered in under one second. To achieve this, we can send to the user a 

coarse version of our model and then gradually refine it. This approach has the advantage of 

keeping the user occupied while the full model is loaded, resulting in that way to a better user 

experience. 

 Also and given that the LODs are created by simplifying the input mesh, we need a 

way to determine if the simplified output is visually pleasant. As mentioned above, there are 

two ways to simplify a mesh. Either by hand or programmatically. In the first case, we have 
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the opportunity to evaluate the simplified output ourselves but this is not always the case 

when taking the second approach. 

  As in Garland’s work [Ga99], we need a way to estimate how much similar the input 

and output meshes are. One approach is to render the two meshes and then calculate the 

differences of the their produced images. This approach has the advantages of measuring 

directly the perceptible similarity of the meshes and that not visible details can be discarded. 

On the other hand we have to render the meshes from all the possible viewpoints. Another 

approach although is to measure the similarity on the geometry level. 

 Kapetanakis in [KK14] extends the MPEG-DASH standard in order to support 

adaptive 3D models. In general, every asset of the scene is described as an Adaptation Set. 

If the asset is separated into different LODs, such as 3D models, these LODs are described 

as Representations. The code below is taken as a part from [ML16] and gives an example of 

a model and its LODs described in an MPEG-DASH manifesto. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
<MPD> 
 
    <BaseURL>http://mclab1.medialab.teicrete.gr:8081</BaseURL> 
    <BaseURL>http://localhost:8081</BaseURL> 
    <BaseURL>http://alternativeHost:8081</BaseURL> 
    <BaseURL>http://alternativeHost2:8081</BaseURL> 
    <BaseURL>http://alternativeHost3:8081</BaseURL> 
    <BaseURL>http://alternativeHost4:8081</BaseURL> 
 
    <Period id="3d_model"> 
        
        <AdaptationSet mimeType="model/x3d+xml" codecs="none" minFrameRate="10"> 
 
 
            <Representation id="6" bandwidth="300000" qualityRanking="4"> 
                <BaseURL>cat3.x3d</BaseURL> 
            </Representation> 
 
            <Representation id="7" bandwidth="500000" qualityRanking="3"> 

http://alternativehost4:8081/
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2.5.1 – Discrete LOD Framework 

 

 In the DLOD framework for every input model, a sequence of gradually coarser and 

look alike models is created. These output models are individual entities, meaning that the 

geometry and topology might be similar but they are disjoint. This simplification process is 

done before runtime. There are mesh simplification algorithms and tools that give an 

automatically generated hierarchy of LODs, although sometimes this process is preferred to 

be made by a human to give a fine tuned result. The video in [Utube16] shows an example of 

a handmade mesh simplification process. Some tools that can be used to automatically 

generate LODs can found in [ADM16] and [BDM16]. 

 The X3D standard offers the LOD node that enables us to manage a hierarchy of LOD 

models in camera-to-object distance manner. Every LOD model is included as a child node 

of the LOD node. The selection of which LOD model will be rendered for the current object-to-

camera distance is determined by the range attribute. Bellow we can find the node’s 

description as defined in [WX3dL]. A live example along with its source code can be found in 

[XfwaL]. 

 

 

 

 
LOD : X3DGroupingNode { 
  MFNode  [in]     addChildren             [X3DChildNode] 
  MFNode  [in]     removeChildren          [X3DChildNode] 
  MFNode  [in,out] children       []       [X3DChildNode] 
  SFNode  [in,out] metadata       NULL     [X3DMetadataObject] 
  SFVec3f []       bboxCenter     0 0 0    (-∞,∞) 
  SFVec3f []       bboxSize       -1 -1 -1 [0,∞) or −1 −1 −1 
  SFVec3f []       center         0 0 0    (-∞,∞) 
  MFFloat []       range          []       [0,∞) or -1 
} 
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 The DLOD framework is widely used in 3D games because it is very easy to 

implement. All we need to do is to create a hierarchy of LOD models and then render the 

most appropriate one. Another advantage is that because the mesh simplification takes place 

in an offline preprocess,  the runtime is free of any mesh simplification algorithms. Thus the 

cost of processing power for this framework is low. 

 On the other hand and because these LOD models are individual entities, when 

transmitting them there will be redundant data in between the LODs. That is because even 

though the geometry might be similar there is no obvious way to leverage the in between 

similarities to make a cumulative transmission. This is solved by using the continuous LOD 

framework, as we will later discuss, because it allows a progressive transmission which 

unfortunately comes with a complex implementation and higher processing power 

requirements. 

 

 

 

2.5.2 – Level of detail transitions 

 

 When using the DLOD framework, the switching between the LODs is abrupt and 

easily perceptible by the viewer, giving the sense that the 3D object “pops” when the camera 

is moving near or away from it. This visual artifact is called the popping effect. In order to 

eliminate it or at least reduce it, we must give a smooth transition between the start and 

target LOD models. For that reason, the geomorphing and alpha blending techniques are 

used and applied on the mesh level and image level respectively. 

 In particular in the alpha blending technique, we draw the two LOD models 

simultaneously one on top of the other and interpolate the transparency values in a short 

period of time. The main disadvantage of alpha blending is that we need to render the two 

models at the same time, increasing that way the displayed geometry. This becomes even a 

bigger problem when we want to switch to a coarser version in order to free up some 

computing resources. Nevertheless, Scherzer and Wimmer in [SW08] represent an algorithm 

that renders the two LODs in subsequent frames and in that way we avoid to simultaneously 

render those two. Figure 15 gives an illustration of the alpha blending transition approach. 
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 Another approach of giving a smooth LOD transition is by using morphing or 

geomorphing. In general, in the morphing technique, the shape of an object gradually 

changes from a starting form to another by interpolating between the two input geometries. 

Figure 17 gives an example of mesh morphing. The problem with this kind of interpolation, is 

that we need to have a one-to-one vertex correspondence and for that reason the two 

interpolating models must have the same number of vertices. 

 To overcome this limitation, Lee et al. in [LDSS99] present a method of morphing 

between multiresolution meshes. As an overview, they reduce the geometry of both input 

meshes in order to build the two bijective source-to-target and target-to-source mappings. 

These mappings are then realized to as what they call the metamesh, which is the merged 

version of the two input meshes. By their estimations although, the size of the metamesh can 

reach up to 10 times the size of the larger mesh. This makes it inappropriate for our 

problem’s solution. The Figure 16 is an excerpt of their work that shows the metamesh’s size 

for four different mesh morphings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 15 An example of a alpha-blending transition. Taken from [SW08] 
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 The methodology’s main idea that is used in [LDSS99] can also be found in many 

other approaches in this research area. In Parus’ work [Par05] we can find a general 

description of the steps that we have to follow. First, for every vertex in the source mesh we 

need to find a corresponding vertex on the target mesh. Note that because the two meshes 

might not have the same number of vertices, some of the source’s vertices will be mapped to 

a point somewhere near the area covered by the target mesh. The next step is the same as 

the previous one but in the opposite direction. Then the supermesh is constructed by 

merging the two input mesh’s topologies. Finally, by using the supermesh we can 

bidirectionally interpolate between the meshes. For that reason and at least intuitively, the 

size overhead is not appropriate for our needs. Nevertheless, the research in this area is still 

active and we do not exclude the chance of a solution approach based on mesh morphing. 

 

 
Figure 16: Metamesh’s size [LDSS99] 

 
Figure 17: Example of mesh morphing [LDSS99] 
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2.5.3 – Continuous LOD Framework  

  

 In the CLOD framework, the model is encoded in a form that it allows us to extract 

the desired LOD from a “continuous spectrum” of LODs. Hoppe in [Hp96] introduces the 

progressive mesh representation. In the PM form, an input polygon mesh M is stored as a 

coarse mesh M0, along with a series of n refinement records. Thus the sequence M0, M1, … , 

Mn describes a continuous spectrum of LODs, with Mn as the original input mesh. For that 

reason, the PM representation scheme can support progressive transmission by first sending 

the base mesh M0 and later the refinement records. 

 Hoppe in his work expresses a mesh as a tuple M = (K, V, D, S). Where K and V 

describe the connectivity and vertex positions. D and S describe the discrete and scalar 

attributes respectively. The attributes D and S are indicative of visual discontinuities in the 

mesh’s appearance, Figure 19 illustrates that case. 

 
Figure 18: Source to target vertices correspondence (green arrows) and target to 
source mesh vertices correspondence (red arrow) [Par05] 
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 In order to produce the base mesh M0  a mesh optimization algorithm iterates the 

input mesh and at each step an edge is removed. This edge removal transformation 

𝑒𝑐𝑜𝑙(𝑣𝑠, 𝑣𝑡)called as edge collapse, removes the edge by collapsing 𝑣𝑡onto 𝑣𝑠. Figure 20 

gives an illustration of the edge collapse transformation and as you can see the incident 

faces to the edge(𝑣𝑠, 𝑣𝑡)are removed as well. In addition, the edge collapse transformation is 

invertible. The inverse transformation 𝑣𝑠𝑝𝑙𝑖𝑡(𝑠, 𝑙, 𝑟, 𝑡𝐴)called as vertex split adds a new vertex 

at the position t and two new faces {𝑣𝑠, 𝑣𝑡, 𝑣𝑙}and {𝑣𝑡, 𝑣𝑠, 𝑣𝑟}. 

 Also, the sequence of edge collapses determines the quality of intermediate LODs. 

This depends on the mesh simplification algorithm. For example, an easy to implement mesh 

simplification algorithm, is to remove a random edge at each step, but most likely the result’s 

visual quality will be very low. Although and because this mesh simplification algorithm is 

executed before the run time, Hoppe in his work takes the approach of investing some time 

in order to meet a better visual quality. 

 In a nutshell, there are three steps that we have to follow in order to create a 

progressive mesh. First, the mesh simplification algorithm iterates the input mesh and 

produces a sequence of edge collapse records. Then the vertex split records are created in 

the reverse order of the edge collapse’s records sequence. Finally, we write to a file the base 

mesh 𝑀0along with the vertex split records. Now we can transmit the 𝑀0and later transmit 

the vertex split records one by one in order to progressively refine the mesh until we reach its 

 
Figure 19: The visual discontinuities are marked as yellow lines [Hp96] 

 
Figure 20 edge collapse and vertex split transformations [Hp96] 
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original form. Furthermore, at each refinement step we can apply geomorphing to avoid the 

popping effect. 

 A technique based on a vertex by vertex refinement scheme offers fine granularity 

but it has the disadvantage of imposing a big overhead. Pajarola and Rossignac in [PR00] 

propose an alternative approach to Hoppe’s PM representation. In their work, they group the 

edge collapses into batches. This results into a batch based mesh refinement scheme 

instead of sending the refinement records one by one. Their approach achieves better 

compression but compromises with a coarser granularity. 

 Figure 21 illustrates a comparison between single rate transmission and progressive 

transformation approaches. 𝑎expresses the time needed to send the coarse version of the 

model. The dashed line curve illustrates the case where after 𝑎we send the original model. 

Note that even though it results in a poor user experience, the overall loading time is the 

shortest. Approaches based on PM are illustrated by the grey curve, we can see that they 

offer a fine granularity but in the expense of a long loading time. Finally the batch based 

approach is illustrated by the staircase curve which makes a  compromise between 

granularity and loading time. 

 Limber et al. in [LJBA13] introduce the POP buffer method. The model’s coordinates 

are mapped to a cluster of nested grids of integer coordinates with different quantization 

levels.  Then by using a truncation function they can increase of decrease the grid’s 

resolution. If the two points of an edge are mapped to the same grid point, then the edge is 

degenerate. Figure 22 illustrates the cell merge and cell split operations. The triangles 

marked in red will become degenerate on the grid with smaller resolution. Finally, the 

triangles are sorted in the reversed order in which they degenerated. They call this reordered 

sequence of triangles as the Progressively Ordered Primitive buffer. That way the 

progressive transmission in this method is straightforward, all we need to do is to push to the 

back the incoming vertices and triangles. 

 Melax in [Sm98] gives a simple, yet quite effective polygon reduction algorithm. In 

fact, we slightly modified a ported version of his implementation to Javascript [Gzz85] and 

used it as our CLOD framework on the server side. In his work, the algorithm iterates the 

mesh and applies an edge collapse operation until the desired number of vertices is 

removed. The vertex pairs that will be collapsed are selected by calculating the edge’s length 

multiplied by a curvature term. The information of edge collapses is kept and the vertices are 

sorted by the collapsing order and we can use this sequence of collapses to achieve 

progressive transmission. 
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2.6 – Delta Compression 

 

 Delta compression or delta encoding is a technique for encoding files in the form of 

differences. Given the previous and current version of a resource, we can create a patch file 

that describes how to change the previous version in order to reconstruct the current. Suel 

and Memon in [SM02] give a more formal definition. Consider two files 𝑓𝑛𝑒𝑤 , 𝑓𝑜𝑙𝑑 ∈ 𝛴, where 

𝛴is an alphabet, the client 𝐶and the server 𝑆and the case where 𝐶has a copy of 𝑓𝑜𝑙𝑑and  

𝑆has both 𝑓𝑜𝑙𝑑and𝑓𝑛𝑒𝑤. We need to compute a delta file 𝑓𝛿such that 𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝛿) <

𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑛𝑒𝑤)by which 𝐶can fully reconstruct the 𝑓𝑛𝑒𝑤. From their work, some of the cases 

where delta compression is applied are: 

 
Figure 21  [PR00] 

 
Figure 22: [LJBA13] cell merge and cell split operations 
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• Software Revision Control Systems, where objects are stored in a way that allows 

the user to retrieve older versions. 

• File system delta compression, where delta compression is applied on the file system 

level. 

• Software distribution, where software updates are transmitted in the form of patches. 

• Visualize differences between two files. 

• Improving HTTP performance by exploiting the similarities between web resources or 

different versions of the same resource. 

 

 An example of using delta compression in software distribution can be found in 

[SC12]. This work deals with the distribution of app updates in the Android Market where for 

each update the full updated version of the app is downloaded. Instead of that, they propose 

the use delta compression and they achieve an average compression of nearly 50%. 

 The Git SCM initially saves the objects in its repository in a “loose” object format and 

compresses them using zlib, a non delta encoding compression library. After that, Git packs 

the objects into a binary file called “packfile”, where delta encoding is used [PGit]. Other 

SCMs such as Mercurial and Subversion [Mer16] [Sv16] follow different approaches of how 

and when to use delta encoding but the goal is the same. As for the visualization of 

differences between edits, Figure 23 is a screenshot of our implementation’s git repository 

that gives such an example. 

 Although text based collaborative and version control systems such as SCMs are 

fairly mature, in the field of CAD and 3D modeling the development of such systems with 

capabilities of the same quality level did not catch up. Nevertheless, Doboš in [Do15] 

introduces the 3D Repo, a cloud based version control and collaboration framework for 3D 

assets that uses a NoSQL database for data storage and retrieval. Again, for reducing 

storage requirements it uses delta compression. 

 Gumhold et al. in [GGS99] deal with mesh compression. First they quantize the 

vertices’ coordinates by splitting each coordinate into four packages of four bits. Then, to 

achieve even better compression they use delta encoding on the vertex coordinates. Hoppe 

in [Hp96] mentions that the vertex split is a local operation and for that reason it results to a 

coherent output where we could use delta encoding. For example, when splitting the vertex 

𝑣𝑆𝑖
𝑖 into the two new vertices, we can predict their positions and then use delta encoding to 

reduce the required storage space. Also, Limper et al. in [LWSJS13] mention that we should 

exploit the browser’s existing compression capabilities by using delta encoding along with 

GZIP compression. 

 Gasparello et al. in [GMBTB11] deal with compression schemes of real-time 

streaming of OpenGL command sequences. As an overview, the command streaming 
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system consists of a master computer that sends OpenGL commands to a pool of slave 

computers to be rendered on its behalf. The master computer runs a custom device driver 

that can intercept any OpenGL call and creates a ghost command code. That way the slave 

computers can replicate the OpenGL calls. Every intercepted OpenGL call is passed through 

a packetizer module that encodes and stores them into a command buffer. Next, the delta 

between the current and previous command buffers is produced and then is compressed 

with a general purpose compressor. Finally the compressed delta is sent through the 

network. Figure 24 gives an illustration of the communication of the master and slave 

computers. 

 

 

 

 

 
Figure 23: Git GUI - Visualization of edits of a file 
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Figure 24: OpenGL commands transmission from master to slave computer 
[GMBTB11] 



48 

 

 

 

 

 

 

 

 Mogul et al. in [MDFK97] try to quantify the potential benefits of delta encoded HTTP 

responses. In their work they sampled HTTP requests whose URL does not include -

practically- any multimedia or binary file extensions. They produced the deltas by using the 

UNIX command diff -e , the compressed output of diff -e and vdelta. Also they mention from 

previous work that responses with the same URL prefix are similar, thus making delta 

encoding effective. In their sampled traces, a fairly big part included URLs containing the “?” 

character, which suggests a query operation, so we expect effective delta encoding because 

of same URL prefix. Their results show that the size and delay of HTTP responses is 

improved when using delta encoding along with data compression. However, using delta 

encoding is viable only when the imposed overhead is smaller than the potential benefits. 

 The main goals of the [RFC3229] proposed standard are to reduce the size of HTTP 

responses, be interoperable with HTTP/1.0 and HTTP/1.1 and optional for the clients and 

servers. In order to work, it adds optional message headers. The accept instance 

manipulation “A-IM” header for the client and the instance manipulations “IM” header for the 

server. These headers describe which encoding format they are willing to use and which 

were finally used respectively. Also it proposes that delta encoded responses should be 

identified with the 226 unassigned code. Figure 25 gives an illustration of the conceptual 

sequence of transformations that are applied. Figure 26 gives an example of a client 

requesting the resource /foo.html of which it has a cached instance with entity tag “123xyz” 

and is wiling to accept compressed responses whether or not they are delta encoded. 

 In RFC 3229 the delta encoded responses only work when they come from the same 

URL, making it that way unsuitable for URLs with varying querying parameters. The SDCH 

proposed protocol [BLM16] overcomes this limitation by using a dictionary file that is shared 

between the client and the server and contains strings that have high chances of appearing 

in subsequent HTTP responses. The client can retrieve the current dictionary “out of band” 

and future HTTP responses will include only references to strings in the dictionary, reducing 

that way the payload size. This compression scheme is referred to as the SDCH encoding 

and is VCDIFF based. 
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Figure 25: Transformations diagram [RFC3229] 
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Figure 26: Request example [RFC3229] 
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Chapter – 3 

 

 

3.1 – Implementation 

 

 In this work, we propose that the LODs should be delta encoded in order to minimize 

the redundant data and achieve lower payload. On the client side we have the browser which 

runs the X3DOM as the X3D player. Also, we implemented a simplistic MPEG-DASH 

adaptation mechanism which is responsible for choosing the appropriate LOD that is 

available from the given MPD file. This adaptation mechanism is also responsible for sending 

the appropriate HTTP request to the server and then apply the patch data when the 

response is received. On the server side, we use the LOD Framework module which can 

extract the desired LOD. When the LOD is extracted, the server computes the delta between 

the extracted LOD and the client’s current LOD and finally responds with the patch data. The 

overview of our implementation is illustrated on Figure 2. Also, on the same server we host 

the web application that allows the user to define LODs along with their quality rankings and 

then produce the MPD file. For the implementation of both the client and server side we used 

the Javascript language.  

 

3.1.1 – Server overview 

 

 For our continuous LOD framework we used and modified a port of [Sm98] from C++ 

to Javascript [Gzz85] which is based on the Three.js WebGL framework. As for the delta 

encoding implementation, we used the [plvc] in both the client and the server. For these 

reasons we chose to implement the server by using the Javascript language and the Node.js 

[Node] as the runtime environment. As for the web application framework we used the 

Express framework [Expr]. The project’s properties and dependencies are defined in the 

package.json file. To install the defined dependencies we called from the terminal the npm 

install command and the npm [Npm] package manager installed the dependencies from its 

remote registry. Figure 27 shows the server's package.json file. 

 On the same server we also built and host our web application that allows the user to 

define the LODs along with the quality rankings by using either the discrete or continuous 

LOD framework. After when the quality ranking and LOD pairs are defined, the server 

produces the appropriate MPD. As a final step of the web application, we display to the user 
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the directions of how to use our MPEG-DASH player. Figure 28 shows the first screen of the 

web application. 

 

 

 

 

 

 

 

 
Figure 27: The server's package.json file 



53 

 

3.1.2 – Discrete LOD framework UI 

 

 In this screen the user is able to upload the LOD models from his or her filesystem 

and define for each LOD the network bandwidth that it requires. After that, the screen which 

contains the directions of how to add the adaptable model into the X3D scene is displayed. 

Figure 29 shows the upload screen and Figure 30 shows the directions screen. 

 

 
Figure 28: Web application's first screen 
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Figure 29: Discrete LOD framework upload screen 
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Figure 30: Directions screen 
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3.1.3 – Continuous LOD framework UI 

 

 First, we show to the user a menu in which he or she can select a model from a 

preset list or upload a new one from the filesystem. Then the screen for defining the desired 

LODs is presented. The selection of the desired LOD is done by moving the slider in the 

bottom. For each desired LOD the user presses the Add range button. When done, the user 

presses the Send ranges button. Figure 31 shows model selection screen and Figure 32 

shows the LOD editor screen. 

 

 

 
Figure 31: Model selection screen 
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Figure 32: LOD editor 
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3.1.4 – Client with MPEG-DASH enabled X3D scene 

 

 For the needs of demonstration, we implemented a simplistic MPEG-DASH player. 

Because the  implementation of content adaptation mechanisms is not an easy task and fall 

out of the scope of this work, the selection of the LOD is made in an ascending and 

descending order of the MPD’s available quality rankings in arbitrary time intervals. The X3D 

scene author needs to include along with our player, the jQuery [jQ] library and the vcdiff 

Javascript implementation [plvc]. Then, the author must add the references of the adaptive 

models of the scene to the player by using the DEF attribute. These steps are described in 

more detail in the instructions page, an example of which is presented in Figure 30. The 

code that changes the LOD of the model is shown in Figure 33. Figure 34 shows the code 

that constructs the HTTP request by including the current and the requesting LOD, then 

when the response is received it applies the patch data. Figure 35 shows an example of a 

scene where two adaptive models are included. Finally, Figures 36 and 37 are screenshots 

that were taken from the client’s runtime. 
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Figure 33: Code that observes and selects the next LOD 
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Figure 34: Code that requests and applies the LODs 
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Figure 35: Example of using the player 
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Figure 36: Client during runtime showing two low LOD models 
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3.1.5 – Results in numbers 

  

 
Figure 37: Client during runtime showing two high LOD models 
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 Here we are going to present how many bytes were needed to be transmited for 

each LOD. For the DLOD framework we used five of the most widely used 3D models for 

testing. More specifically the Bunny, Suzanne, Happy Buddha, Dragon and the Armadillo 

models which they were converted into the *.x3d file format. We produced a hierarchy of six 

LODs for each model by using the Blender’s decimation tool. The CLOD was tested with the 

Suzzane model. Each LOD, for all the models, includes the 30%, 40%, 60%, 70%, 90% and 

100% of the model’s faces. Each LOD was delta encoded using the previous LOD as its 

source. 

 

 

 

 

 

 
Table 1: Results table of the Bunny model using the DLOD framework 

 
Figure 38: Graph of the Bunny’s transmitted bytes using the DLOD framework 
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Table 2: Results table of the Suzanne model using the DLOD framework 
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Figure 39: Graph of  the Suzanne’s transmitted bytes using the DLOD framework 
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Table 3: Results table of the Happy Buddha’s model using the DLOD framework 
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Figure 40: Graph of  the Happy Buddha’s transmitted bytes using the DLOD 
framework 
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Table 4: Results table of the Dragon’s model using the DLOD framework 
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Figure 41: Graph of  the Dragon’s transmitted bytes using the DLOD framework 
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Table 5: Results table of the Armadillo’s model using the DLOD framework 
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Table 6: Average savings of all the tested models using the DLOD framework 

 
Figure 42: Graph of  the Armadillo’s transmitted bytes using the DLOD framework 
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Figure 43: Graph of average savings of all the tested models using the DLOD 
framework 
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Figure 44: Results table of the Suzanne's model using the CLOD framework 

 
Figure 45: Graph of  the Suzanne's transmitted bytes using the CLOD framework 
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3.2– Summary, conclusions and future work 

 

 In this work we focused on the transmission of LODs using the discrete and 

continuous LOD frameworks. In the first framework each LOD is represented as an individual 

3D model. This means that the geometry is disjoint and we don’t have a straightforward 

method for a redundancy free transmission. On the other hand we have the continuous LOD 

framework in which a 3D model is encoded in a way that it allows us to extract the desired 

LOD on demand. On the down side, there is no standard encoding scheme that is used 

among all implementations. To alleviate these issues we propose the use of delta encoding. 

 Among its many applications, delta encoding is also used in the RFC 3229 and the 

SDCH protocols in order to minimize the payload size of HTTP responses. The work of 

[GMBTB11] deals with the size reduction of OpenGL command batches that are streamed 

through the network. They use data compression along with delta encoding which they call 

as in-frame and inter-frame compression respectively. We believe, at least in a more abstract 

level, that their work is close to our solution approach even though they are dealing with a 

different kind of problem. 

 On the server side we created a module that can extract the desired LOD which is 

then converted into a form compatible with the X3D’s IndexedFaceSet node and the patch data 

are produced by using the client’s current LOD. Then the client produces the target LOD by 

applying the patch and updates the scene’s model by using the jQuery’s .attr() [jQattr] 

method for the point and coordIndex attributes. The given API for the MPEG-DASH client 

developer is fairly simple. To change the current LOD, he or she will just call the model’s 

changeLOD method which takes two arguments. The first one is the requesting quality ranking 

and the second one is an observer object which is notified if the LOD update was successful 

or if it failed. 

 Delta encoding performs well when the differences between the input files are small, 

which we can confirm that by our results. As we can see, the high compression ratios can be 

found when we were changing the LOD from the 30% to 40%, from 60% to 70% and from 

90% to 100% of the model’s faces. Finally, we got the best compression ratios when using 

the CLOD framework. This is because the data in this framework are homogeneous. 

 Based on this observation, a possible future research would deal with the 

development of a mesh simplification algorithm that produces a delta encoding friendly 

output. Additionally, we would like to fully investigate the potentials of the SDCH protocol on 

the transmission of LODs. 
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